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ABSTRACT 

Due to the computationally intensive nature of the tasks that digital signal processors (DSP) 

are required to perform, it is desirable to decrease the time required to execute these tasks. 

Minimizing the execution time required for the various algorithms that are commonly and 

frequently executed ( ex: FIR filters) will improve the overall performance. It is known that 

hardware is able to execute algorithms faster than software, however, due to the size 

limitations of embedded DSP, not all of the necessary algorithms can be implemented in 

hardware. A reconfigurable cache architecture in combination with a DSP is proposed as an 

alternative to increase algorithm performance by using reconfigurable hardware rather than 

dedicated hardware. Another important issue to consider for embedded processors is the 

power consumption of the DSP. Due to the fact that most embedded processors operate by 

battery power, energy efficiency is a necessity. This study looks at the power requirements 

of a DSP with reconfigurable cache to determine the viability of such an architecture in an 

embedded system. Others have shown that reconfigurable cache in conjunction with a 

general purpose processor improves performance for some DSP benchmarks. This study 

shows that a DSP /reconfigurable cache combination can achieve kernel performance gains 

ranging from 10-350 times that of a DSP architecture operating alone and can achieve overall 

benchmark speedups ranging from 1.02 to 1.91 times that of the existing DSP architecture. 

Further, relative power consumption results show that the power consumption of the 

reconfigurable architecture is approximately 85 to 95% of the current architecture (5-15% 

power savings) and attains energy savings ranging from approximately 14 to 50%. 
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CHAPTER 1. INTRODUCTION 

Forward Concepts projects that DSP sales will surpass the $12 billion mark by the year 2005 

[l]. The projected increase in sales is expected to be due primarily to cellular phone sales but 

the increasing popularity of multimedia devices, which use DSPs, like MP3 players and 

digital recorders also contribute to the market. As this market continues to grow 

manufacturers of DSPs will continue to search for ways to enhance their products. A DSP 

that is faster, smaller and more energy efficient than its competitors will enjoy a larger slice 

of the market. 

1.1 Performance Improvements in General Purpose Processors and Digital Signal 
Processors 

In today's fast-paced society people do not like to wait, thus technology users expect prompt 

and precise computing. If the user is working on a personal computer (PC) it is unlikely that 

the PC has a specialized DSP chip, thus it is up to the general purpose processor (GPP) to 

meet these expectations. In an effort to increase performance most modem GPPs use multi-

level caches to speed up the retrieval of data from main memory. However, multimedia 

processing and other common DSP computations fall into a category of computing referred 

to as single instruction, multiple data (SIMD). This refers to the streaming nature of the data 

processing where many data elements will be processed in the same manner ( thus single 

instruction). This type of processing does not take advantage of temporal locality. Computer 

designers rely on temporal and spatial locality of data accesses to justify the large fraction of 

chip area dedicated to cache. DSP processing under-utilizes large caches [2]. In addition to 

multi-level caches, GPPs have increased clock speed, implemented Harvard memory 

architectures ( separate data and instruction memories for concurrent accesses) and utilized 
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out-of-order processing (which can take advantage of instruction-level parallelism) to further 

improve performance. While some DSPs have implemented out-of-order processing and 

Harvard memory architectures to increase performance, few have increased clock speeds to 

the level of GPPs due to the fact that as clock speed increases, so does the amount of power 

consumed. Most DSPs are used in embedded, mobile systems where energy-efficiency is 

just as crucial as fast computing. Thus, DSPs have explored other avenues to improve 

performance such as implementing very long instruction word (VLIW) architectures. VLIW 

architectures are another method of increasing the number of instructions that can be 

executed in parallel. In a VLIW architecture several instructions are fetched at once and then 

separated into execute packets depending upon which instructions do not have data, name or 

control dependencies and thus can be executed in parallel. VLIW architectures rely upon 

sophisticated compilers that can statically schedule the code in advance to determine which 

instructions can execute in parallel [3]. New methods of analog-to-digital conversion have 

also been implemented to increase 1/0. With increased 1/0 speeds and real-time constraints, 

the possibility exists to increase computation speed as well. To enhance computing 

performance some of the most frequently used algorithms are implemented in hardware. 

Unfortunately, space limitations prevent all necessary algorithms from being implemented in 

hardware. 

Recently, some DSP manufactures such as Texas Instruments (Tl) have started to include on-

chip cache to help increase performance [4]. Since most DSP data computations are of the 

streaming nature, these cache sizes are so far relatively small (ex: 16KB). However, [5] 

presents an argument that cache size will continue to increase on DSPs, which can be 
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supported by the fact that TI has increased the cache size in their TMS320C64x line of 

processors over what was included on their TMS320C62x line. 

In the past few years several types of reconfigurable hardware architectures have been 

proposed to help GPPs better utilize the hardware at their disposal and to increase 

performance to meet the needs of computationally intensive applications. Another approach 

that has been taken in some DSP and GPP systems is to use a field-programmable gate array 

(FPGA) to perform some of the highly repetitive computations such as discrete cosine 

transform (DCT) or finite impulse response filter (FIR). However, these designs suffer from 

an input/output bottleneck due to the fact that all the data necessary for the computations 

cannot be stored in the FPGA. 

1.2 Problem Explored 

3 

Most of the reconfigurable GPP designs have not explored the effect of reconfigurability on 

power consumption. While it is the author's belief that society as a whole must consider 

ways to improve energy efficiency, in DSP applications this is a necessity and thus changes 

that affect power consumption must be taken seriously. Therefore, this research will explore 

not only the performance improvements that a reconfigurable architecture can lend a DSP, 

but also its effects on power consumption. It was shown in [2, 6, 7, 8, 9] that utilizing part of 

the level-one cache as a functional unit or other type of reconfigurable hardware can enhance 

the performance of a GPP. A fine-grained reconfigurable coprocessor for an Analog 

Device's SHARC DSP was proposed in [10] but it did not measure the power consumption 

effects of the reconfigurable coprocessor. The research team at the University of California, 

Berkley, that is working on the Pleiades project have written a plethora of papers [11, 12, 13, 
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14, 15, 16, 17, 18, 19,20,21] ontheirproposedreconfigurableDSP. ThePleiadesproject 

focuses on designing and implementing a low-energy reconfigurable DSP using an ARM 

microprocessor and a variety of "satellites" such as a low power field programmable gate 

array (FPGA), a multiply and accumulator, memory cells, etc. While they have extensively 

studied the energy effects of their reconfigurable architecture, this was the only literature the 

author could find on reconfigurable DSPs that also explored power consumption. Both of 

these reconfigurable DSP designs require additional hardware to implement. Possibly due to 

the fact that cache on a DSP chip is a relatively new occurrence, this author could not find 

any literature that explored the use of converting part of the cache to a reconfigurable 

functional unit for performance improvements. This study proposes a reconfigurable DSP 

that utilizes existing chip structures for implementation of the reconfigurable hardware. The 

proposed design uses a reconfigurable cache similar to [ 6] and [7] to increase performance in 

a DSP. The difference between this study and the research done in [ 6] and [7] is that this 

study uses the reconfigurable cache with a VLIW DSP whereas [ 6] and [7] used the 

reconfigurable cache with a superscalar GPP. Further, this research examines power and 

energy issues; [ 6] and [7] did not. The performance, energy and power consumption effects 

will be measured using a simulator that was created by this author. The simulator in [22] that 

simulates the TI TMS320C62x VLIW processor was modified to simulate the TI 

TMS320C64x VLIW processor. The simulator in [22] did not include cache simulation, so 

the cache portion of [23] was modified to work with this code and added to the simulator. 

The power measurement abilities were achieved by merging the power files from [24] with 

the new simulator. Due to the fact that the power files in [24] were created to estimate the 

power consumption of an out-of-order processor these files had to be modified to remove the 

logic and structure components for out-of-order prediction and miss-prediction correction. 
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These modifications, along with other minor modifications make the power estimates more 

closely reflect the structure of the TMS320C64x VLIW processor. 

1.3 Thesis Organization 

In order to give the reader a better understanding of what has been researched in the area of 

reconfigurable processors, Chapter 2 will focus on an overview of the various proposed 

reconfigurable GPP and DSP architectures that attempt to either better utilize cache or 

improve upon the VO bottleneck. These architectures can be divided into two broad 

categories: architectures that utilize existing resources in new, reconfigurable ways and 

architectures that add additional reconfigurable hardware to the chip. A review of previous 

research into the energy efficiency of reconfigurable DSPs will also be discussed. Chapter 3 

will first present background infonnation on the Texas Instruments TMS320C64x digital 

signal processor, which is used as the base processor in this study and then present the 

reconfigurable architecture proposed by this author. The experimental setup and multimedia 

benchmarks that are used will be described in Chapter 3 as well. Chapter 4 will present the 

results of analysis of these benchmarks on the reconfigurable DSP and Chapter 5 will 

summarize the conclusions. 

5 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Architectures that Utilize Existing Cache as a Reconfigurable Component 

As stated above, the different reconfigurable architectures can be divided into two categories: 

architectures that utilize existing cache as some form of reconfigurable hardware to increase 

cache utilization and architectures that add reconfigurable hardware to increase performance 

and eliminate the I/O bottleneck. The architectures that utilize cache will be examined first. 

2.1.1 Balanced Architectures 

2.1.1.1 Adaptive Balanced Computing 

A processor chip can be viewed as consisting of components that do one of two basic 

functions, memory or computation [6], [7]. As stated in [7], most caches in existence 

consume over half of the area of a modern microprocessor chip. However, some processes 

cannot efficiently utilize a large cache. Thus, the authors proposed converting part of the 

cache (a memory component) into a reconfigurable functional unit (RFU). The goal was to 

design an architecture that was more balanced in terms of bandwidth needs, thereby 

improving the performance of the architecture. This architecture used an out-of-order issue, 

superscalar processor (simulated by SimpleScalar [23]) in conjunction with the 

reconfigurable module. Balanced reconfigurable architectures were also studied in [2] and 

[8]. A set-associative cache was used with one of the ways (modules) within the cache 

converted to a reconfigurable module. The functional modules were given computation 

capabilities by making them multi-bit lookup tables. Additional hardware as added to each 

reconfigurable module to act as input and output buffers. The purpose of the buffers was to 

keep the data flow into and out of the functional modules in order. The out-of-order GPP had 
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four arithmetic functional units each for integer and floating point as well as one multiplier 

each for integer and floating point. The focus of [ 6] and [7] was to first examine whether or 

not this architecture would improve performance. When performance gains were observed, 

[ 6] also focused on fine-tuning the improvements by examining various cache sizes and 

configurations. Further, this study takes a conservative approach for the filter kernels by 

assuming that an RFU cache access would take three cycles rather than just one. The kernel 

functions that were mapped to the reconfigurable cache (RC) were FIR ( 16 tap and 256 tap) 

and DCT/IDCT as well as an infinite impulse response (IIR) filter. Cache sizes and 

associations that were compared were 32KB 2-way, 64KB 2-way, 64KB 4-way, 128KB 4-

way. Additionally, direct-mapped, 2-way and 4-way caches were compared for 16KB, 

32KB, 64KB and 128KB sizes. 

2.1.1.2 Reconfigurable Modules 

This design is similar to the architecture used in [ 6] and [7] that converts part of a traditional 

level-one cache into a look-up table with minor implementation differences in terms of the 

reconfigurable cache. The primary difference between this design and the previous one is 

that existing cache modules are used for input and output space rather than adding hardware 

to implement the input and output buffers. Specifics of the processor were not given, but it 

was stated that the default simulator values were used. The level one 128KB data cache was 

divided into 16 modules. Four of the modules carried out normal cache operations while the 

other 12 modules could be used as either a functional unit or a register mapped module. The 

kernel functions that were implemented in the reconfigurable modules were a FIR filter and 

discrete cosine transform/inverse discrete cosine transform (DCT /IDCT). 

7 
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2.1.2 Reconfigurable Cache for Instruction Reuse 

Several different possible uses of RC for multimedia applications were given in [9]. 

Suggestions included using portions of the cache as lookup tables or buffers for applications 

such as value prediction, memoization and instruction reuse. Another suggestion was to use 

a portion of the cache as a software or hardware data prefetch area. Due to the streaming 

nature of multimedia data, storing data on-chip, in advance, would improve performance. 

The third possibility was to use a portion of the cache as memory that was directly under the 

control of the compiler or an application. Instruction reuse was the option implemented in 

[9]. A 1 GHz, eight-way issue, out-of-order processor was simulated for this study. 

However, the RSIM simulator [25], rather than the SimpleScalar simulator, was used. The 

level one cache was 128KB 4-way associative. This cache was divided into two 64KB 2-

way associative caches and one way of each division was used as a buffer area to store 

instruction reuse entries. Each entry consisted of the instruction's operand values for 

arithmetic and logical instructions and addresses for memory instructions. A buffer latency 

of 2 cycles was assumed. 

2.2 Reconfigurable Hardware Extensions to Improve Performance and the 1/0 
Bottleneck 

Most of the reconfigurable architectures that have been proposed to date make use of 

8 

additional hardware component(s) that are similar to, or actually are field-programmable gate 

arrays (FPGAs ). FPGAs are fine-grained reconfigurable lookup tables that can significantly 

improve performance. However, as stated in [26], the drawbacks to systems that utilize only 

FPGAs are large reconfiguration overhead times and their inability to hold all the data 

necessary to complete most computationally intensive tasks (1/0 bottleneck). The following 

architectures examine ways of combining FPGAs or FPGA-like structures with core 
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processors and on-chip memory in an attempt to improve performance while reducing the I/O 

bottleneck. 

2.2.1 Garp 

A type of reconfigurable hardware that attempts to eliminate the I/O bottleneck is Garp [26]. 

Garp places a FPGA on the processor chip and gives it access to both the data cache and off-

chip memory thereby giving the FPGA access to all the data necessary to perform data-

intensive computations. The FPGA operates in slave mode to the Reduced Instruction Set 

Computer (RISC) core processor and is referred to as a reconfigurable array (RA). The RA 

is divided into blocks with 24 columns of blocks. The number of rows of blocks can vary 

depending on the needs of the application being processed. The granularity of this design is 

2 bits, with each block reading as many as four 2-bit pairs and giving up to two 2-bit outputs. 

Unlike the architectures reviewed above, the RISC processor used in this design is a single-

issue processor. 

2.2.2 OneChip 

Another reconfigurable architecture that incorporates FPGA-like extensions onto the 

processor chip is OneChip [27]. OneChip uses a 32-bit RISC core processor. The processor 

is a single-issue, in-order processor with one existing functional unit (FU). OneChip extends 

the functioning capabilities of the processor by placing several programmable functional 

units (PFU s) in parallel with the existing FU. The OneChip architecture was improved upon 

in [28t which introduced OneChip-98. The key difference in OneChip-98 is placement of 

the reconfigurable hardware in the instruction decode stage of the pipeline. Here the FPGAs 

function as a flexible interface with memory that has high bandwidth and is capable of 
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buffering instructions, providing local storage for data and conducting logic computations. 

This extension allowed the processor and reconfigurable logic to operate in parallel at a 

higher throughput rate. Further, this model upgraded the core processor to an out-of-order 

RISC processor. 

2.2.3 Chimaera 

Chimaera is another reconfigurable design that uses embedded FPGA-like devices on-chip 

with the GPP [29]. This system uses the reconfigurable array of FPGA-like devices as a 

cache for storing recently used reconfigurable functional unit (RFU) instructions. When a 

new RFU instruction is loaded, it replaces the least recently used instruction, thereby 

achieving dynamic partial reconfiguration during runtime. 

2.2.4 MorphoSys 

IO 

MorphoSys [30], [31] proposes yet a different reconfigurable architecture for improving 

multimedia processing performance. The MorphoSys design consists of a simplified MIPS-

type 100 MHz GPP that was named "Tiny RISC" combined on a chip with an 8 by 8 coarse-

grained reconfigurable cell array. TinyRISC operates on 32-bit words, however, the smallest 

data size the reconfigurable cell array can work with is 16 bits (thus, it is coarse-grained). 

The reconfigurable cell array, although similar in basic layout to a FPGA is very different at 

the cellular level. Each cell is composed of an ALU-multiplier, two multiplexers and a shift 

unit. The row/column interconnection of these cells allows MorphoSys to reconfigure the 

interconnections and thus change the overall functionality of the array. A simulator, 

MorphoSim, has been created to measure MorphoSys performance. 
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2.3 Other GPP Reconfigurable Designs 

2.3.1 The MIT Raw Microprocessor 

The MIT Raw microprocessor design [32],_ [33] takes a very different approach from the 

others in this category in that rather than combining reconfigurable hardware components 

with a single processor, the entire chip is composed of numerous reconfigurable tiles each 

with its own RISC-like processor. The architecture is called Raw because the compiler is 

made aware of ( exposed to) the layout of the internal hardware. This awareness enables the 

compiler to map functions to hardware more optimally than if the compiler was unaware of 

the underlying hardware. The Raw microprocessor combines various tiles structures on an 

interconnect fabric to make a structure that is similar in nature to a coarse-grained FPGA. In 

addition to each tile having its own RISC-like processor, each tile also has its own SRAM 

memory. This distributed memory helps to eliminate the VO bottleneck. The Raw 

microprocessor is usually combined with off-chip DRAM for additional storage capacity. 

This architecture was analyzed for several different applications to determine the optimal 

layout of the tiles and amount of SRAM per tile. The Raw architecture in [32], [33] operates 

at 25 MHz and utilizes one billion transistors. Further research into the Raw microprocessor 

was reported in [34]. The Raw architecture was implemented at about 225 MHz with 32 tiles 

and 0.122 billion transistors in [34]. 

2.3.2 A System on a Chip 

An adaptive system on a chip (aSOC) architecture has been proposed in [35]. Increased 

flexibility and performance are achieved by aSOC by connecting different tiles for different 

activities. For example, a field-programmable gate array type tile, a GPP RISC type tile, and 

a digital signal processor type tile may all be interconnected. Other tiles may be RAM or 
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multiple tiles can even be combined to implement a VLIW processor. The interconnection of 

these tiles for various tasks is scheduled statically prior to execution. However, the 

implementation of the tiles themselves can be reconfigured dynamically depending on the 

needs of the application. Two different configurations of the aSOC were explored in [35]. 

The first consisted of 2 RISC tiles, 1 FPGA tile and 6 multiplier-accumulators. The second 

consisted of 4 RISC tiles, 2 FPGA tiles and 10 multiplier-accumulators. The RISC tiles were 

MIPS R4000 processors simulated using SimpleScalar. The FPGA tiles were Altera brand, 

simulated using an Altera FPGA simulator. In [36] several algorithms were implemented 

with each algorithm mapped to its own tile within the aSOC. Energy efficiency was 

considered while mapping these algorithms to the tiles. 

2.3.3 Another System on a Chip 

The authors of [3 7] propose another system on a chip design for reconfigurable computing. 

This design also target multimedia applications in portable devices with a goal of increasing 

computing speed. The core reconfigurable component of this design is called a Dnode (Data 

node) and is comprised of an ALU and a few storage registers. Thus the Dnode design is 

similar to the MorphoSys cell. The Dnodes are arranged around a core controller in a 

layered, interconnected ring rather than a square array. The ring structure allows for easier 

data feedback according to [3 7]. This design operates at a clock frequency of 200 MHz and 

is reported to be capable of 1600 MIPS (millions instructions per second). For details on 

other system on a chip designs please see [38] and [39]. 
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2.3.4 CRISP 

The reconfigurable architecture proposed in [ 40] is different from all the others discussed 

thus far in that it is a VLIW processor with a reconfigurable functional unit added to the chip. 

The name, CRISP, is an acronym for Configurable and Reconfigurable Instruction Set 

Processor. The CRISP architecture has five integer functional units, 2 load/store units and 

one branch unit. The reconfigurable functional unit (RFU) is an array of coarse-grained 

processing elements that can be configured to handle 8, 16 or 32-bit data. These data sizes 

were chosen because CRISP is specifically targeted at multimedia applications and most 

multimedia applications use these data sizes. The CRISP processor has 16KB of level one 

instruction cache and 16KB of level one data cache. The level two cache is unified and is 

2MB. Additionally, the CRISP processor's reconfigurable functional unit contains 32 

processing elements and the CRISP processor has a 4 KB level one configuration cache and a 

256KB level two configuration cache. The configuration cache provides nearby storage 

space for the configuration data so that the reconfiguration time of the RFU is kept to a 

m1rumum. 

2.4 Reconfigurable Digital Signal Processors 

The literature available on reconfigurable DSPs is much more limited than the literature 

available on reconfigurable GPPs. Two different reconfigurable DSP designs were reviewed 

and details of them follow. Of these two designs, one designs their reconfigurable DSP to be 

energy efficient. 
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2.4.1 DSP Reconfigurable Logic Hybrid 

An Analog Devices' SHARC floating point DSP was chosen in [10] as the base DSP. The 

SHARC, which is implemented in 0.6 micron technology has 512KB on-chip memory that is 

organized as two banks each with an I/0 port so that concurrent memory accesses to each 

bank do not conflict. The SHARC also has a multiplier functional unit, an arithmetic logic 

unit and a shifter, all of which can operate in parallel. SHARC increases its I/0 speed by 

utilizing several on-chip 1/0 peripherals such as a direct memory access (DMA) controller. 

The reconfigurable logic is positioned on the chip so that it has access to all of the I/0 ports 

and to the register files. This way the reconfigurable logic can act partially as a coprocessor 

and partially as a functional unit. In [1 0] the reconfigurable logic itself was described as 

resembling the Xilinx 4000 series of FPGAs but the authors stated that a coarse-grained 

device similar to the reconfigurable logic used in Garp [26] would probably work better. 

Approximately 1000 configurable logic blocks (CLBs) were used in the reconfigurable logic. 

The clock speed of SHARC is not given. Nor is the clock speed of the reconfigurable logic 

listed. However, [IO] does state that they operate at the same frequency. Figure 1 gives an 

overview of their proposed model. 
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Figure 1. The SHARC DSP with reconfigurable logic [10]. 

2.4.2 Pleiades 
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The Pleiades research group at the University of California, Berkeley, have invested a lot of 

time into the exploration of their reconfigurable DSP architecture. This has allowed them to 

explore all aspects of the Pleiades architecture from the method to use to map 

computationally intensive algorithms onto their reconfigurable architecture [13], [14] to what 

type of reconfigurable interconnect to use [15] to a compiler for generating the code to 

execute their design [ 16]. Figure 2 details the design methodology and the code generation 

process. 
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During these investigations three main factors were behind all of their decisions: power, 

delay and area. As stated in [13] each of these factors play heavily in determining the 

success of a DSP architecture. Unfortunately, optimizations of one of these factors may have 

detrimental effects on the other factors. Therefore, it is necessary to consider all three factors 

simultaneously when considering design changes. According to [ 11] the key to designing an 

energy-efficient reconfigurable architecture is to closely match the granularity of the 

algorithm to the granularity of the unit that processes the architecture. The name Pleiades 

refers to a general reconfigurable architecture that can have many different specific 

instantiations. The various components that make up the Pleiades architecture area an ARM 

microprocessor, a hierarchical generalized mesh reconfigurable interconnect, memory units, 

address generators, multiply and accumulators (MACs), arithmetic logic units (ALUs), VO 

ports and low power FPGAs that they designed [ 41]. Each of these units is referred to as a 

satellite. Figure 3 shows an overview of the generic Pleiades architecture. The ARM 

microprocessor is used primarily for sending configuration data to the various satellites to 

ensure a smooth flow of computations at the satellites. Additionally, the microprocessor is 

used for simple computations and control flows such as if-then-else statements. 
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Figure 3. Overview of the Pleiades Architecture [ 18]. 

One specific instantiation of the Pleiades architecture that they discuss is the Maia 

architecture. The Maia architecture was designed to perform the different voice processing 

algorithms such as VSELP and VCELP [21]. Some of the computationally intensive kernels 

of these algorithms are dot product, FIR filter, IIR filter and covariance matrix computation. 

A diagram of the Maia architecture can be studied in figure 4. 
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The Maia architecture is implemented in 0.25 micron technology and has been designed to 

operate at an average speed of 40 MHz. The chip is 5.2 mm x 6.7 mm and contains 1.2 

million transistors. Maia runs on a main supply voltage of 1 V and consumes an average of 

1.5 - 2.0 mW for VCELP processing [21]. 
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CHAPTER 3. MATERIALS AND METHODS 

As can be seen from the literature reviewed above, most reconfigurable architectures that 

have been proposed augment a GPP for performance improvement. Perhaps this is due to the 

fact that most DSPs already have many hardware features customized to their common 

computationally intensive needs. However, with the ever-increasing computational demands 

of multimedia and wireless devices, DSPs can benefit from the incorporation of 

reconfigurable hardware to improve performance and to provide more flexibility than 

dedicated hardware can provide. The use of cache with DSPs is a relatively new occurrence 

[4], however, new DSPs are reducing the 1/0 bottleneck by adding on-chip cache. The Texas 

Instruments TMS320C64x (C64x) is one family of DSPs that utilizes on-chip cache for 

improved performance. Like in [6], [7], portions of this cache could be used as a 

reconfigurable functional unit. 

3.1 Current C64x Architecture 

3.1.1 Architecture Overview 

The current C64x is a fixed-point VLIW architecture that operates at 600 MHz. A VLIW 

architecture is designed to execute multiple instructions in parallel. However, unlike a 

superscalar processor, instructions are executed in-order and the determination of what 

instructions can execute at the same time is determined statically by the compiler prior to 

run-time. Branch prediction does not occur in a VLIW architecture either. Therefore, a 

VLIW architecture does not need additional complex logic control hardware, such as reorder 

buffers and branch prediction tables, that a superscalar processor requires. Rather, a VLIW 

architecture relies on a sophisticated compiler to enforce dependencies during compilation. 
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The C64x has two register files (A and B) that each contain 32, 32-bit registers. A modified 

Harvard architecture is used for the cache design, thus utilizing two separate level one (L 1) 

caches. The Ll program cache is a 16KB direct-mapped cache. The Ll data cache is a 

16KB 2-way set associative cache. A unified level two (L2) cache is also included on-chip. 

The L2 cache is 1024 KB and can be configured to consist of either all SRAM or partial 

SRAM and partial 4-way set associative cache in various combinations. There are four 32-

bit wide data buses connecting the register files to the Ll cache (two per register file). This 

enables two 64-bit wide data loads to occur simultaneously. There are some restraints on 

which load and store instructions can execute in parallel due to port limitations. For 

example, non-aligned loads and stores of words and double words are permitted, but cannot 

occur in parallel with any other non-aligned load/store instructions. The bus connecting the 

CPU to the instruction cache is 256 bits wide to enable eight 32-bit instructions to be fetched 

at once. The C64x has eight different functional units (FUs) that each connect to the register 

files. Two of the FUs (. Ll and . L2) handle basic arithmetic operations. The S-units (. S 1 

and . S2) handle branches in addition to basic arithmetic operations. The M-units (. Ml and 

. M2) are dedicated to multiply and MAC operations. The final two units (. D1 and . D2) are 

dedicated to address computations and load/store instructions. A cross-path allows any 

functional unit that directly connects to Register file A to receive and store data in Register 

file B and vice versa. Only two instructions executing in parallel can access data via the cross 

paths (one to A and one to B), but up to two instructions can share the operand received on 

the cross path. If the operand being read via the cross path was updated in the previous cycle 

a one-cycle delay will occur before the data is available. Figure 5 gives an overview of the 

C64x layout [42]. 
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3.1.2 Instruction Set Architecture 

The method by which each instruction moves through the pipeline is dictated by various 

fields in its binary instruction. Figure 6 gives an example of a C64x binary instruction (also 

referred to as the opcode by TI). All C64x instructions are 32-bits long, but the type and 

placement of fields within the instructions varies depending upon the instruction type and 

what functional unit it uses. For all instructions, the least significant bit (using Little Endian 

notation), denoted by "p", indicates that the instruction executes in parallel with the 

instruction preceding it if the bit is set to one. In assembly code the "II" symbol is used to 

indicate that the instruction executes in parallel. The next bit, denoted by "s", determines 

whether the A register file (s=O) or the B register file (s= 1) is used to send operands to the 

functional unit. This bit is always in the same location for all instructions. The next group of 
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bits specifies what functional unit to use for execution. The number of bits used to specify 

the functional unit varies, and while generally consistent for each unit type, it does even vary 

occasionally for the same unit. In this example, the next three bits are used and are set to 0x6 

to denote the . L unit. The group of bits labeled "op", also known as the opfield, specify the 

operation performed, which for this example is signed and unsigned addition. The "x" bit 

indicates that one of the operands is obtained from the cross path if it is set to one. In 

assembly an "X" is listed after the function unit specification ( ex: .D2X) to indicate that the 

cross path is used. The next five bits in this example, labeled "srcl/cst", indicate the register 

number where the first operand is stored or, for some instructions the three bit constant value 

to be added to the other operand. Likewise, the next five bits, labeled "src2", indicate the 

number of the register that contains the second operand and the five bits labeled "dst" 

indicate what register the results will be stored in. Instructions that use a larger constant 

displacement use more bits. The remaining four most-significant bits are always used to 

indicate whether or not the instruction is conditional, and if so, what register to use to check 

the condition. If the "z" bit is set to one the instruction is conditional. Only registers AO -A2 

and BO - B2 can be used as conditional registers (in TMS320C62x devices the AO is not a 

conditional register). Load and store instructions have slightly different fields. For specifics 

on individual instructions, please refer to [43]. 

The C64x is completely backwards compatible with the TMS320C62x. Thus, all instructions 

in the ISA of the C62x are also included in the C64x's ISA. In addition to the ISA of the 

C62x the C64x has well over 100 new instructions specific to its architecture. Additionally, 

the C64x adds a new control register for specifying some of the parameters necessary for 
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Galois Field multiplication. One of the new instructions, GMPY 4, implements Galois Field 

multiplication, which is a common algorithm in Reed Solomon decoding [ 44] . 

Opcode . L unit 
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I Cf9!) I zl dst I src2 srr:1/cst I XI .. . 
op 

3 5 5 5 7 

Figure 6. Example of the ADD (U) instruction layout [43]. 

3.1.3 Pipeline 

The C64x takes advantage of an 11-stage pipeline in conjunction with the eight FUs to 

achieve speeds up to 4800 MIPS [43], [45]. The 11 stages are divided into three groups: 
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Fetch, Decode and Execute. The Fetch group consists of the first four stages: Program 

Address Generate (PG), Program Address Send (PS), Program Access Ready Wait (PW) and 

Program Fetch Packet Receive (PR). The names of these stages are fairly self-explanatory. 

The program counter address is determined by the CPU in the PG stage and then sent to the 

instruction cache in the PS stage. The role of the PW stage is not as evident from its name. 

In this stage the instruction cache is read. If a miss occurs, then the appropriate block of 

instructions is fetched from the unified L2 cache, or from main memory if a miss also occurs 

in L2. In the PR stage the fetch packet arrives at the CPU. A total of eight instructions are 

fetched at a time in a fetch packet. The Decode group consists of stages Instruction Dispatch 

(DP) and Instruction Decode (DC). In the DP stage the fetch packet is broken into one or 

more execute packets. Execute packets consist of instructions that can be executed in 

parallel. In the C64x architecture an execute packet can be scheduled by the compiler to be 
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loaded in separate fetch packets. However, due to the fact that there are only eight functional 

units, an execute packet cannot be larger than eight instructions. 

Instruction parallelism is determined statically by the compiler during compilation based on 

what instructions do not have data or resource ~onflicts. Due to the limited ability of any 

compiler to completely disambiguate memory references further parallelism can often be 

obtained by optimizing the code by hand. If the fetch packet contains more than one execute 

packet, then further fetches of instructions from the instruction cache are stalled until all of 

the execute packets in the DP stage have advanced through the pipeline in order. Figure 7 

illustrates how fetch packets containing various numbers of execute packets progress through 

the pipeline. The CPU decodes the instructions within the execute packet in stage DC. All 

of the stages in the fetch group and the decode group are used by every instruction that 

moves through the pipeline. The first stage of the execute group, Execute 1 (EI), is also 

utilized by all instructions. The remaining four stages of the execute group, Execute 2 - 5 

(E2, E3, E4 and E5), are only used by instructions that cannot complete execution in one 

cycle ( ex: loads, stores and multiplication). 

Clock cycle 
Fetch Execute 
packet packet 

(FP) (EP) 2 3 4 5 6 7 8 9 10 11 12 13 
n k 
n k+1 
n k+2 

n+1 k+3 
n+2 k+4 
n+3 k+5 
n+4 k+6 
n+S k+7 
n+6 k+8 

Figure 7. Illustration of Fetch Packets Progressing Through the Pipeline [43]. 
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In stage E 1 the instructions in the execute packets begin execution at the functional units 

indicated by the unit field in the binary instruction. The functional unit assignment, like the 

execute packet assignment, is also done by the compiler statically during compilation. Most 

instructions can be assigned to either of the functional units of a particular type. However, 

there are a few instructions that are specific to an individual FU and cannot be assigned to the 

same FU on the other side (ex: "Branch Using a Register" can only be assigned to .S2). 

All branch instructions in the C64x Instruction Set Architecture (ISA) are unconditional, 

unless the instruction is predicated. All instructions in the ISA can be predicated for inherent 

"if-then-else" instruction handling. Branch instructions, although requiring only one cycle to 

determine the branch PC address, have a five-cycle delay slot before the branch is taken. 

Load instructions require five cycles to complete, with a four-cycle delay slot (not including 

potential cache delays) after the address generation in E 1. Store instructions require three 

cycles to complete. A load instruction does not actually access memory until stage E3, thus a 

load instruction that follows a store to the same memory location does not have to wait any 

cycles for the data to be available. For this reason, TI states that store instructions do not 

have any delay slots. However, if a load and a store to the same memory address occur in 

parallel, the old data will be loaded and then the new data will be stored [ 43]. 

3.1.4 On-Chip Cache 

3.1.4.1 Ll Program Cache 

As stated above, the C64x has a level-one 16KB program cache that is direct-mapped. This 

cache is a read-only cache to prevent corruption of the program that is running. The cache 

consists of 32-byte wide blocks. Since a 32-byte block can hold 8 32-bit wide instructions, 



www.manaraa.com

28 

this block size ensures that each fetch packet can cause at most one cache miss. There are 

512 sets in the cache. Only one cycle is required to read a fetch packet from the Ll pro~am 

cache if a hit occurs. Due to the fact that misses are pipelined, and that the amount of 

parallelism within the fetch packet can affect how soon some instructions in the packet will 

be needed, L 1 misses can take anywhere from zero to seven cycles if the data is in the L2 

cache. If the data is not in the L2 cache, then the data will have to be fetched from external 

memory. The amount of delay incurred due to an external memory access will vary 

depending upon what type of external memory the DSP is connected to. 

3.1.4.2 Ll Data Cache 

The 16KB 2-way set associative data cache is a read-allocate cache. In other words, data 

currently in the cache will only be evicted to make room for new data on a read miss. Write 

misses do not cause space allocation to occur. Rather, a write miss will store the data in a 

write buffer that exists between the L 1 and L2 cache to reduce CPU delays. The L2 cache 

will then empty the write buffer as time permits. The write buffer can only hold up to four 

double words. If the L2 cache is mapped as SRAM then two single word adjacent stores can 

be merged to allow the buffer to not fill up as quickly. The Ll data cache is also a write-

back cache so when a write hit occurs, the data will just be written in L 1. The block that 

contains the newly written data will be marked as dirty and it will not be written back to L2 

until that block is evicted. The L 1 cache uses a least-recently-used (LRU) policy to 

determine what blocks are replaced when space needs to be allocated for read misses. 

Memory banks that are 32 bits wide are used to organize the cache in a manner that helps to 

ensure that two parallel accesses will not conflict. If, however, the accesses are to the same 
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memory bank, are not to the same block within that bank and are greater than 16-bit wide 

accesses, a stall will occur. Due to miss pipelining in the L 1 cache, a miss in L 1 that hits in 

L2 will cause a delay in the range of two to eight cycles. The average delay is five cycles. 

As with the Ll program cache, if the Ll data cache request also misses in L2 the delay will 

depend upon the type of external memory implemented. 

3.1.4.3 L2 Unified Cache 
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In the C64x the L2 unified cache consists of 1024KB, however, not all of that space can act 

as cache. The L2 can be configured in a variety of combinations to consist of either 1024KB 

of SRAM, or with part of the space acting as a 4-way set associative cache and the remaining 

space as SRAM. If part of the space is implemented as cache, its size can range from 32KB 

up to 128KB. Figure 8 depicts the different L2 configurations. The memory banks in the 

L2 are increased to 64 bits wide rather than the 32-bit wide banks in the L 1. The L2 cache is 

a write-allocate cache, rather than read-allocate. This means that a write miss, not a read 

miss, will cause space to be allocated in the L2 cache for the new data. Rather, the L2 is a 

load-through cache, so read misses in L 1 that also miss in L2 will cause the data to be loaded 

directly through the L2 to the L 1 without being written in the L2. 

The L2 also uses a LRU scheme for replacing data upon misses. If the level two memory is 

configured entirely as SRAM and a read miss occurs, the miss can cause two different 

responses. In addition to specifying configuration, the user can also specify whether or not 

the SRAM region is cacheable. If it is set up as cacheable, a miss will load an entire block of 

data and forward it on the appropriate Ll cache. If it is set up as non-cacheable, then just the 

specific piece of data that is needed is retrieved and forwarded to the appropriate LI cache. 
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Neither way is the data stored in the SRAM space. For more information about the C64x 

caches please refer to [42]. 
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Figure 8. Level 2 SRAM/Cache Organizations [42]. 

3.1.5 Power Consumption 

The power consumption of a processor fluctuates as the bit switching activity fluctuates 

during program execution. Due to this data-dependent fluctuation, it is impossible to give 

exact power consumption requirements for the C64x or any processor. However, typical 

power consumption values based on actual measurements are reported in [46]. The C64x 

operates at 600 MHz, is implemented in 0.12µm technology and requires 1.4 V to function 

30 
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properly. 1/0 operates at the common external device voltage of 3.3 V. Table 1 lists the 

reported power consumption values for C64x. In [46] power is reported "per frequency" and 

as high/low activity models, so totals of these values are presented in Table 1. High activity 

is classified as eight instructions executing per cycle, with 32 bytes of data being fetched 

from L 1 program cache and 16 bytes of data being fetched from L 1 data cache. Additional 

specifications are given for the activity of the L2 and other peripherals. Low activity is 

classified as only two instructions executing per cycle, with 32 bytes of data being fetched 

from L 1 program cache every four cycles and only 2 bytes of data being read from L 1 data 

cache. [46] reports that most applications spend about 50-75% of their time in high activity 

and the remaining time in low activity. This table includes measured power consumption for 

the four different low-power modes that the C64x has: Idle, PDl, PD2, PD3. In the idle 

mode NOPs are continuously executed until an interrupt restarts activity. Modes PD1-PD3 

shut down various peripherals and clocking of different components to reduce power 

consumption. Normal activity can be restored from PDl with an interrupt, but PD2 and PD3 

require a reset to restart activity. The power measurements for PD2 and PD3 in [46] disabled 

all external memory interface clocking as well to conserve more power. More information 

about the low-power modes can be obtained in [ 42]. 

Table 1. Measured Power Consumption Values for the C64x at 600 MHz, 1.4 V [46] . 
Power Per 50/50 High/Low 75/25 High/Low Low Power Modes (W) 
Frequency Activity (W) Activity (W) 
(mW/MHz) 
CPU with Ll Total Total Idle PDl PD2 PD3 

Caches 
0.7 1.47 1.61 0.94 0.87 0.35 0.31 
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3.2 Reconfigurable Architecture 

3.2.1 Architecture Overview 

This research examines the use of a reconfigurable functional cache in the C64x to enhance 

performance while maintaining or reducing current design power consumption. In this 

research the overall architecture of the C64x is not modified extensively. Existing cache 

sizes are used for most simulations with the exception of one that uses a 32KB 2-way set-

associative cache. This was done to see if the existing DSP could be enhanced with the 

reconfigurable functional cache (RFC) to improve performance without degrading other 

factors that affect performance such as the cache miss rate. If performance and power 

consumption measurements are the same or better with a 16KB 2-way set associative cache, 

then it is likely that even greater improvements would be seen in the future with larger 

caches. It was shown in [ 6] that cache access time for a reconfigurable cache actually 

decreases when compared to a memory cell array cache and increases only 1 % when 

compared to a base array cache. Therefore, the reconfigurable cache does not significantly 

affect the cycle time and thus the frequency of the DSP is unchanged. Other aspects of the 

DSP such as voltage, number and size of registers in the register file, bus widths, etc. are also 

unchanged. A couple of reconfigurable implementations do require additional hardware such 

as dedicated adders or a divider, as well as input/output buffers. These will be discussed in 

more detail in section 3.2.4. 

3.2.2 Simulator 

The simulator is the embodiment of the instruction set architecture for the C64x in this work. 

The only comprehensive, freely available simulator for a TI VLIW processor was the one 

implemented by Vinodh Cuppu from the University of Maryland [22]. His simulator was of 
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the TMS320C62x DSP and, because of the file names used, will be referred to as the c6000 

simulator in this document. The authors of [47] have written a simulator of the C64x, but 

their version is a very stripped-down model with only about 20 instructions implemented. 

Further, their version reads in a text version of assembly code to determine what instructions 

to simulate, whereas the c6000 loads an actual binary executable generated by the TI 

compiler and is thus capable of simulating entire benchmark programs rather than just brief 

sections of code. 

The c6000 is a functional simulator in that it actually loads data from memory, performs the 

operations on the appropriate operands from the appropriate registers and then stores the 

result to the appropriate register and on to memory when a store occurs. The c6000 fully 

implements the 11-stage pipeline and accurately determines stalls and cycle advancements. 

Therefore, the c6000 was chosen as the base simulator that was modified to create a new 

simulator, which will be referred to as the c6400 in this document. It should be noted that the 

c6000 does not handle interrupts (the actual DSP does), nor does it simulate peripheral 

devices, but otherwise is fairly comprehensive. The c6400 does not handle interrupts either. 

The only peripheral devices it simulates are the caches. 

The c6400 is a mixture of a functional and a timing simulator that simulates the C64x, 

including its cache activity, and estimates its power consumption. The c6400 maintains the 

functionality of the c6000 simulator but only does timing simulations for the cache accesses. 

Primary modifications to the c6000 simulator include increasing the register file size to 32 

registers per file, increasing bus widths to accommodate 64-bit wide data, increasing cache 

size, and incorporating the instructions into the simulator that the C64x has over and above 
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the C62x. Since this research looks at the performance of reconfigurable cache and its power 

consumption, it is necessary for the simulator to simulate and report cache activity as well as 

estimates of power consumption of the various components of the DSP. A rudimentary, flat 

memory structure existed in the c6000, but there was no cache and no power estimation 

capabilities. These capabilities will be discussed next. 

3.2.2.1 Cache Simulation 

To implement cache in the c6400 the cache files "cache. c" and "cache. h" were 

incorporated from the SimpleScalar simulator [23]. In the SimpleScalar simulator the cache 

component operates as a timing simulation. In other words, it determines if a cache access 

would be a hit or a miss and thus how much latency is incurred by the access, but it does not 

actually load data from or store data to the cache. The documentation with the files states 

that it has the capability to handle data movement by setting one Boolean variable to true. 

However, difficulty was encountered in trying to incorporate the cache as a functional cache. 

Therefore, it was decided to continue to use the existing memory simulation for the actual 

movement of data during loads and stores and to simply use the cache simulation to 

determine if those accesses would be hits or misses. This way the cache simulation can still 

track important cache statistics such as miss rate but does not need to be burdened with the 

actual data movement. Once it was decided to use the cache simulation as a timing model 

only minor modifications such as variable names and declaration types had to be made to 

incorporate the cache files into the c6400 simulator. 

The cache creation and miss-handling functions were implemented in the main file, 

"c6000. c" of the c6400 to maintain consistency with how cache creation and miss-
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handling functions are instituted in [23]. Currently, rather than allowing the user to specify 

the cache types, sizes and associativity, the values are set within the code to reflect the 

current C64x cache sizes and types. In the future, if a user so desired, command-line 

specification of these variables could be instituted similar to [23]. 

3.2.2.2 Power Estimation 
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As mentioned previously, it is difficult to take accurate power measurements of a processor. 

It is even more difficult to try to predict the power consumption of a proposed design that has 

not been manufactured. Since the design and fabrication of new devices is a costly procedure 

many researchers have focused on ways to accurately estimate the power needs of an 

architecture that is still in the design stages. The primary means of estimating power 

consumption are to estimate power at the architecture-level, the behavior-level, the 

instruction-level or the system-level. At the architectural level analytical and empirical 

methods have been used. This method attempts to look at the activity switching of various 

registers and logic to estimate power. Behavior-level power estimation uses static and 

dynamic activity prediction to estimate power. Instruction-level power estimation was 

proposed in [48] and its use for embedded systems discussed in [49]. System-Level power 

estimation attempts to estimate power consumption for all components of the device to give a 

more comprehensive estimate. For an overview of these methods please see [50]. 

Various researchers have looked specifically at the power requirements of DSPs such as the 

Pleiades research referenced earlier. Another power prediction model for a DSP was 

proposed in [51]. While similar to the work in [48] and [49], [51] is different in that different 

straight line basic blocks are looped through several times to gain power measurements, and 
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then a linear regression model is created to predict future power consumption. Another 

research team looked specifically at power estimation for a VLIW DSP [ 52], but an actual 

simulator of these power estimations was not found. Therefore, portions of another 

simulator, Sim-Wattch [24] were included in the c6400 simulator to give power estimation 

capabilities. Sim-Wattch is built on top of the SimpleScalar simulator, and as such, estimates 

the power consumption of an out-of-order processor. An out-of-order processor requires 

complex structures such as a reorder buff er and complex controls for speculation and branch 

prediction. A VLIW processor does not require any of these complex structures or controls. 

In order to more closely reflect a VLIW processor the files "power. c" and "power. h" 

that were incorporated from [24] were modified to remove the unnecessary hardware 

structures and account for the appropriate size and number of data buses and registers. Sim-

Wattch uses a modified version of the file "time. c" from the CACTI cache simulator [53] 

for estimating timing and capacitance measurements of different components of the 

simulator. Sim-Wattch can be scaled to better reflect the power needs of different process 

technologies. However, 0.12µm technology was not one of the technologies implemented. 

The scaling values for 0. 12µm technology were calculated by interpolating between the 

values for 0.1 0µm and 0.18µm technology. 

Energy consumption is calculated by the equation: 

E = P*T = l*Vdd*T (1) 
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Where P stands for power, T represents time, I is the current passing through the device, and 

V dd is the voltage required by the device. The derivative of this equation can be taken to 

determine the instantaneous power measurement. This is given by Equation 2. 

P(t) = V(t) * l(t) (2) 

The modified version of Sim-Wattch used in the c6400 initially estimates the power 

requirements of the register files, the instruction cache, the data cache, the L2 cache, the 

functional units, the buses that connect the functional units to the registers and the clock. It 

then scales these values each cycle based on the activity measured in the data that is 

transferred between the functional units and the registers and on how many times each 

component was accessed during that cycle. Running totals are kept for each component. 

The summation of all of these component totals except the clock power represents the energy 

consumed during the simulation of the program being executed by the simulator. This is 

shown in Equation 3. An average of the overall total is taken to estimate the average power 

consumed each cycle and is shown in Equation 4. 

Total Energy= Register+ !cache+ Dcache + L2cache +FU_ power+ Resultwires (3) 

Average Total Power per cycle = Total Energy-;- total cycles (4) 

Sim-Wattch also has three different conditional clocking levels that energy and power are 

estimated for. The first, referred to as "eel" in the code is a basic, non-aggressive 

conditional clocking. The second ( cc2), is an aggressive conditional clocking that assumes 
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zero power is consumed by components that are disabled that cycle. This is an idealistic 

clocking model as generally some residual power loss will occur even when a component is 

disabled. The third clocking model ( cc3) accounts for this residual loss and is perhaps a 

more realistic aggressive conditional clocking model. 

Power measurements are fundamentally the same for the reconfigurable architecture as for 

the base architecture. For both the normal and reconfigurable cache the data caches are 

assumed to be segmented, base-array caches. Documentation was not found to support this 

assumption of the current implementation of cache in the C64x, but, results can be modified 

to reflect a memory-cell only array if desired. There are two major differences for the 

reconfigurable DPS. First, cache computing functionality is gained by implementing 4-bit 

input look-up tables (4-LUTs) within the data array of an 8KB cache module. Each 4-LUT 

requires a four-bit decoder. Please see Figure 9 for a diagram of a reconfigurable cache. 

When the reconfigurable cache is in computing mode only the four-bit decoders are accessed, 

not the main decoder for the data array. To account for this power the power used by the 

data array decoder is scaled to estimate the power for a four-bit decoder. This value is then 

scaled by the number of LUTs in the reconfigurable module. Most functional units and main 

registers are not accessed while the DSP is in reconfigurable mode, so their totals do not 

increase during RFC cycles. The only existing functional units that are routinely accessed 

while in reconfigurable mode are the . 01 and . 02 units. These are used during 

reconfigurable cache configuration and data input load/stores for address calculations. 

Second, when dedicated adders and/or dividers are used by a reconfigurable layout power 

estimates for these components are included in the total. The estimates for these components 

use the values that are used for the . L units and the . M units respectively and assume a 
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switching activity of 0.5 for a worst-case estimate. While the addition of these dedicated 

devices dictates that bitlines within the cache must be stretched, [ 6] determined that the 

increased capacitance on these stretched bitlines was negligible and thus is ignored here in 

power estimates. For a more detailed description of the cache at a transistor level, please 

refer to [53] or [6]. 
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The ml,difications to the Sim-Wattch power simulation have not been verified against actual 

measured power consumption of a VLIW processor. As stated in [50], when a designer is 

considering optimizations of a potential new architecture, relative power estimations are 
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more important than accurate, actual measurements. The power estimates in the c6400 allow 

relative power comparison to see how the reconfigurable modifications affect the power 

consumption of the C64x DSP. This is sufficient for this research. 

3.2.3 Reconfigurable Functional Cache 

To add reconfigurable cache capabilities to the c6400 the cache file "cache. c" was further 

modified to handle hit/miss estimations for the RFC. When the simulator is in RFC mode 

way O of the 2-way cache is tagged as the reconfigurable module. This means that only way 

1 is available for normal cache operations. This effectively reduces the data cache size to 

8KB from 16KB. When way O is specified as the RFC module the only allowed accesses to 

way O are the loading of configuration data and table look-ups. Input and output buffers are 

added to way O to allow for buffering of input data and output data during RFC computing. 

The "c 6 0 0 0 . c" file was modified to detect the entry into RFC mode and the exit from RFC 

mode. These modifications are based upon the methods used by [ 6] to implement RFC but 

are not identical. For instance, since the binaries that the c6400 uses are generated by a 

proprietary compiler, new instructions to handle the configuration of the LUTs in the RFC 

could not be added to the ISA. To compensate for this limitation the user must specify the 

PC value of the first instruction to the kernel that is implemented in RFC and the PC value of 

the exit point from this kernel. These values are easily obtained by viewing the disassembly 

code in the TI Code Composer Studio Integrated Development Environment. The simulator 

then watches for these values. When the entry PC value is encountered the simulator sets a 

global Boolean variable "RFC_ mode" to true. 
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When RFC_ mode is true the simulator will continue to execute the instructions that pass 

through the pipeline in order obtain the results of these instructions for later use. However, 

cache accesses are not made for these instructions, the cycle counter does not advance and 

power updates are not made for these cycles. This is done to limit the impact of these 

instructions as much as possible on the device. If the RFC cache were truly implemented in 

the device, these instructions would be replaced by RFC instructions, and results of data 

calculations would be obtained from the RFC. For simplicity, the RFC simulation handles 

only the cycle advancement aspects of the RFC to determine the number of cycles required 

for the RFC to configure, load data, compute and store the results back to memory. 

Upon initially entering RFC mode the appropriate kernel function in "RFC f uncs. c" is 

called. The functions within this file step through the stages needed to use a cache module as 

RFC to determine the cycles required as well as incrementing access counters when 

appropriate for instruction and data cache and then call the appropriate power function to 

calculate power updates each cycle. Each RFC function begins by simulating the loading of 

configuration data. To simulate the configuration loads cache accesses are made to both the 

instruction cache and data cache to determine cache hit/miss statistics for these loads. Way 0 

is not initially flushed, but rather dirty lines that are replaced during configuration loading are 

simply handled as they normally would be. If the user wishes to completely flush way 0 

before configuration, this can be done without incurring additional CPU stalls due to C64x' s 

ability to hide these writebacks within the pipeline [ 42]. 

Once the configuration is loaded, then input data is loaded to begin computing. Depending 

upon the kernel, this usually involves loading a block of inputs with look-ups not 
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commencing until a complete block of data is present in the input buffer. Output from the 

look-ups is stored in the output buffer to await further processing or storage back to memory. 

Once all input has been loaded and processed results are stored back to memory. If the 

implementation requires reconfiguration of the LUTs before processing can complete, then 

computing is delayed until reconfiguring completes. While the current block is processing 

the next block of data can be loaded into the input buffer. This allows subsequent data loads 

to be hidden so additional delays are not incurred. To ensure timely reconfiguration and data 

loading, these values can be locked into a portion of L2 that is acting as SRAM. 

3.2.4 Benchmarks 

The benchmarks and kernels used to measure the performance of the reconfigurable DSP and 

existing C64x DSP were from the University of Toronto's DSP benchmark suite {UTDSP). 

However, these benchmarks and kernels originally used floating point variables. With look-

up table computations it is easier to use integer values. Fractional values can be handled if 

distributed arithmetic is used [55], but for simplicity these variables and their inputs were 

modified to whole number types. The benchmarks chosen for simulation were Compress, 

Edge Detect, and Spectral. Compress is an image compression program that uses 

DCT. The DCT processing occurs 256 times in Compress and accounts for approximately 

45% of the cycles needed to complete the benchmark. Amdahl's Law shows that 

optimization efforts should be focused on the portions of an architecture or code that account 

for a large fraction of the overall computing time for the effects of these optimizations to be 

greatest. Therefore, DCT in Compress is an excellent candidate for RFC. Edge Detect 

is an image processing program that uses 2-D convolution as part of the edge detection 

process. Convolution is repeated three times in Edge Detect and accounts for 
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approximately 13% of the cycles needed to complete Edge Detect. This percentage does 

not make convolution in Edge Detect as good a candidate for RFC as DCT, but it is large 

enough that speedups can still be gained with RFC implementation. The third benchmark, 

Spectral, does a spectral estimation on an input speech signal using a Fast Fourier 

Transform (FFT). FFT is called 16 times during Spectral and consumes about 20% of the 

total benchmark cycles, making it another good candidate for RFC. 

UTDSP also contains several kernel programs that execute common digital signal processing 

filters like FIR, IIR, and normalized lattice filters. The only additional code within these 

kernel programs handles I/O of the data. Kernels do not give a true picture of the 

performance of an architecture in the real world because seldom will one algorithm run by 

itself. However, in digital signal processing these filters are important and thus DSP 

architectures are generally tailored to them. Therefore, a 32-tap FIR filter and a 256-tap FIR 

filter with inputs ranging from 256 - 4096 were implemented in RFC. 

3.2.5 Kernel Implementations in RFC 

The 4-LUTs used in these configurations are 16-bits wide in order to better fit within existing 

cache designs. In most of the configurations though, not all of these bits are actually 

necessary for the computation that is occurring. The different structures implemented with 

the 4-LUTs are 8x8 and 8x16 constant coefficient multipliers, various sized adders, 

adder/subtracters, accumulators, multiplexers and 16-bit ROM. For each kernel 

implementation, a variety of layouts for the LUTs may be possible. With the exception of 

DCT, only one layout is presented per benchmark/kernel. 
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3.2.5.1 DCT 

An 8x8 2-D DCT with 8-bit inputs and 16-bit coefficients was implemented as 2 1-D DCTs 

in RFC. This implementation was based on the DCT design in [ 56]. The basic equation for 

an 8x8 2-D DCT is: 

XC = I I XN . _c(_p_)c_( q_) . cos-1r_(2_m_+_l_) P_. cos-:r_(2_n_+_l )_q 
pq m=O n=O mn 4 2M 2N 

(5) 

Where Mis the total number of rows and N is the total number of columns. To break this 

into 2 1-D transforms 1-D for the rows is calculated and then 1-D for the columns. The 

coefficient equation for 1-D of the rows is: 

C K 
(2 · column number+ l) • row number• ,r = •cos--------------

2•M 
(6) 

For Equation 6 K N for row O and / N for all other rows. The coefficient equation 

for the 1-D of the columns is: 

C t K (2 · row number+ l) • column number• ;r = •cos--------------
2• N 

(7) 

For the column DCT K M for column O and / M for all other columns. Due to the 

symmetry of the coefficients a 1-D transform can be completed with only 32 coefficients 

although a total of 64 coefficients are generated. Figure IO shows the basic organization of 
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the 1-D row transform. In the diagram K ranges from zero to seven. The diagram for the 

column transform is similar, so it is not shown. 
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To implement a 1-D transform in 4-LUTs 8-bit adder/subtracters, 8x16 constant coefficient 

multipliers, and 24-bit adders are needed. How to create a 4x8 constant coefficient unsigned 

and signed multiplier with two 4-LUTs that have 12 bit outputs is explained in [57]. The 

signed version is shown in Figure 11. This idea can be expanded to create an 8x 16 constant 

coefficient multiplier out of four 4-LUTs that have 16-bit outputs. In this case, the four most 

significant bits of each LUT are not used. The primary drawback of this design is that not 

all of the 32 constant coefficient multipliers that are needed can be implemented in an 8KB 

cache module. Each eight inputs of a row are multiplied with the same eight coefficients and 

then the results are added together to generate a total. Since the inputs from two rows are 

combined before multiplication this can occur in parallel for all eight rows if there are 32 

constant coefficient multipliers. If not, then reconfiguration will need to occur during each 

1-D DCT. Four different implementations ofDCT were designed to explore the tradeoff 

between using a larger cache module to avoid reconfiguration, using dedicated hardware to 

avoid reconfiguration and using a layout that requires implementation. Three of the 

implementations are discussed next. The fourth implementation, which uses distributed 

arithmetic, is based on the implementation of DCT in [ 6] and [7]. For details of the fourth 

implementation please see [ 6] or [7]. 
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Figure 11. Design of a signed 8x8 Constant Coefficient Multiplier using 4-LUTs [57]. 

3.2.5.1.1 1-D DCT with 16 Constant Coefficient Multipliers 
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The first implementation of the DCT used an 8KB cache with no dedicated hardware. In an 

8KB cache only 16 coefficients can be configured in LUTs at a time. This requires four LUT 

rows, leaving four more LUT rows for the adder/subtracters and 24-bit adders. Four 8-bit 

adder/subtracters and two 24-bit adders can be implemented in each of the remaining four 

rows. This configuration allows four rows to complete 1-D of the DCT before 

reconfiguration occurs. After reconfiguration the remaining four rows are able complete. 

Each 8x 16 constant coefficient multiplier requires at least one 24-bit adder to sum its partial 

products. Due to the constraint on the number of 24-bit adders available, only two 

coefficients can complete at a time and three look-ups are needed to complete the summation 
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for each. Table 2 details the number oflook-up requirements for each LUT structure. One 

LUT look-up can occur per cycle, so these numbers translate directly to the number of cycles 

required for that structure. The total cycles required for the DCT depends on how many of 

the look-ups can occur in parallel. This implementation requires a total of 11 cycles to 

complete one input each from four rows. Figure 12 gives a layout of2 rows ofLUTs. Three 

more replicas of these rows complete the entire 8KB configuration. 

Table 2. Look-Ups Required for LUT structures. 
1-D DCT Implementation Usin2 an 8KB Cache Module 

Structure Look-ups Required 
8-bit adder/subtracter 1 
8x 16 constant coefficient multiplier 4 
24-bit Accumulator 2 

24-bit Adder 24-bit Adder 

8x16 Constant Multiplier 8xl6 Constant Multiplier 8x16 Constant Multiplier 8xl6 Constant Multiplier 

Figure 12. Layout of 4-LUTs for Two DCT coefficients. 1 Box= 4, 4-LUTs. 

3.2.5.1.2 1-D DCT with 32 Coefficients and Dedicated Hardware 

The second implementation of 1-D DCT in RFC implements the partial product LUTs of all 

32 constant coefficient multipliers using 4-LUTs in an 8KB cache module. One dedicated 8-
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bit adder/subtracter is added for each row to do the initial addition/subtraction of the two 

inputs. Additionally, eight dedicated 24-bit adders are placed between each row of LUTs 

(one adder for each constant coefficient multiplier). This implementation avoids 

reconfiguration costs at the expense of adding dedicated hardware. The look-ups required for 

each structure are given in Table 3. The advantages of this implementation are that eight 

constant coefficient multiplication and accumulations can occur in parallel rather than just 

two as in the previous implementation. A diagram of the LUTs for this layout is not given as 

it is basic. 

Table 3. Look-Ups/Cycles Required for LUT and Dedicated Hardware Structures. 
1-D DCT Implementation Using an 8KB Cache Module, 

32 Coefficients, and Dedicated Hardware 

3.2.5.1.3 1-D DCT with a 16KB Module 

This layout is similar to the first layout, but the total cache size is increased to 32KB to allow 

a 16KB reconfigurable module to be used. The doubling in size allows an 8-bit 

adder/subtracter and four 24-bit adders to be placed in one row and eight constant coefficient 

partial product lookups in the next row. These two rows are repeated three more times to 

give the entire configuration of the 16KB module. The advantage of this layout is that an 

entire 1-D DCT can be completed without reconfiguration and without the cost of additional 

dedicated hardware. The tradeoff is, of course, that more area is required on-chip to 

implement a 32KB 2-way cache. The number oflook-ups required for each structure is the 
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--same-as the~first implementation; butcydes are saved because four coefficients per row can 

complete their look-ups in parallel and reconfiguration is not required. Again, a diagram is 

not shown as the layout is the same as the first, only the number of 24-bit adders and 

coefficients are doubled. 

3.2.5.2 Convolution 

The convolution kernel implemented in Edge Detect multiplies a 128x128 matrix with 16-

bit inputs of an image with a 3x3 filter matrix of 8-bit coefficients. Initially, the absolute 

values of the filter matrix are swnmed to determine a normalization value. Then, each value 

in the image matrix is multiplied with each value of the filter matrix and the results are 

accumulated. The final sum of each of these accumulations is divided by the normalization 

value to give the output image value. The equation for the matrix multiplication not 

including normalization is: 

K=I K-1 

sum = LL input_ image[r + i][ c + j] * filter[i][j] (8) 
J=O J=O 

Where rand c range from zero to N-K, N=128 and K=3. This equation can easily be 

modified to execute more quickly by simple software loop unrolling to allow nine MACs to 

occur in parallel. The reconfigurable version of convolution takes advantage of this fact by 

implementing the nine filter coefficients as 16x8 bit constant coefficient multipliers along 

with one 24-bit adder for each multiplier. Therefore, an input buffer large enough to hold 

nine two-byte inputs is necessary for this RFC implementation. The normalization is done 

once at the beginning with a 16-bit adder/subtracter and a multiplexer implemented in a 4-

LUT. The next stage depends upon nine input values being available simultaneously for 
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processing. Once the input buffer is full the MAC stage begins. The nine values obtained 

from the multipliers are added pair-wise using five 24-bit adders to reduce the number of 

consecutive look-ups required for accumulation. Results are stored in the output buffer until 

execution is complete. As with DCT, additional data loads can occur while the LUT look-

ups are occurring, thereby hiding the latency of these loads. When execution has completed 

for all inputs the results are stored back to memory. Table 4 lists the number of look-ups 

needed for the structures in convolution and Figure 13 shows the layout of the LUTs within 

the 8KB cache module. 

Table 4. Look-Ups Required for LUT structures in Convolution. 
Convolution Implementation Using an 8KB Cache Module 

Structure Look-ups Required 
16-bit adder/subtracter (sums 9 values) 9 
Two input multiplexer 1 
16x8 constant coefficient multiplier 4 
24-bit Accumulator 4 
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16-bit adder 8x 16 Constant Multiplier 8x 16 Constant Multiplier 
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Figure 13. Layout of LUTs for Convolution. 1 Box= 4, 4-LUTs. Mux only uses ½ box. 

3.2.5.3 FFT 

A mathematical understanding of FFT can be gained by looking at Equation 9. This equation 

is from [58], which gives a good explanation of FFT. Most software implementations of FFT 
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do not follow this equation closely though, due to the fact that it has a complexity of 0( n 2 
) • 

Rather, most software implementations strive to achieve a complexity of O(n * log 2 (n)). In 

this equation n is the number of inputs and the outputs. A restriction is placed on n that it 

must be a power of two. The variables Xk and Yp are the inputs and the outputs. The 

subscripts, which can range from zero to n-1, denote which complex-valued input/output is 

being used that iteration. The inputs are in the time domain and outputs are transformed to 

the frequency domain. 

(9) 

The Fast Fourier Transform that is used by the Spectral benchmark was implemented in 

RFC using 8-bit inputs and 16-bit constant twiddle values. The benchmark code computes 

the twiddle factors each time FFT is called, but these values are not dependent on the input 

values, so the RFC assumes the twiddle factors have been pre-computed and stored with the 

LUT configuration data. Unlike the other implementations, there is no easy division of how 

many inputs need to be present before look-ups begin. Therefore, an input buffer large 

enough to hold two arrays of 64 one-byte inputs each is used and all data loads must occur 

before processing begins. This slows the FFT implementation down due to the fact that some 

of the load delays cannot be hidden in the L UT cycles. The FFT code has several statements 

that assign the value of one variable to another variable. This is handled in the LUTs by 

using an adder with one input fixed to zero and the other input being the variable whose 

value is being assigned to the other variable. This could certainly be handled other ways, but 

this method was chosen to give a logical flow to the data movement. Another difference 
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between the FFT RFC implementation and the others is the use of four l 6x 16 RO Ms. These 

are similar to the 16x16 ROM used in [6] and [7] for the DCT RFC. There are a total of 32 

real twiddle factors and 32 imaginary twiddle factors. Sixty-four constant coefficients were 

too many to implement in multipliers like the others. Therefore, two 16x 16 RO Ms are used 

for real and two for imaginary to store pre-computed partial products. Table 5 lists the cycles 

required for the different structures used in the RFC to implement FFT. Figure 14 details the 

layout of the LUTs in an 8KB cache. The final stage ofFFT performs a bit-reversal on all of 

the real and imaginary inputs. The C64x has an instruction that handles this already-BITR. 

The BITR instruction requires two cycles to complete. Therefore, for the last stage the inputs 

are moved to registers, the bit reversal is performed on each input and then the results are 

stored back to the output buffer. 

Table 5. Look-Ups Required for LUT structures in FFT. 
FFT Implementation Usin2 an 8KB Cache Module 

Structure Look-ups Required 
8-bit adders and 8-bit subtracters 1 
16x16 ROM 1 
24-bit adder for partial products 2 
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Row of 8-bit Adders 
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E] E] E] E] E] E] 

24-bit Adders and Subtracters 24-bit Adders 

Figure 14. Layout ofLUTs for FFT. 1 Box = 4, 4-LUTs. 
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3.2.5.4 32-Tap and 256-Tap FIR 

The implementation of the 32-tap FIR and 256-tap FIR filters differ only in how many times 

reconfiguration needs to occur. Therefore, they are both discussed together in this section. 

The equation for FIR is shown in Equation 10. 

M 

y(n)= Lbmx(n-m) (10) 
m-0 

An FIR filter is simply a convolution (MAC) operation. This implementation uses 8-bit 

inputs and 8-bit coefficients. The types of LUT structures used are identical to [6] and [7] 

but they are arranged differently within the 8KB cache module. The layout differences are 

necessary since the C64 x cache module is 3 2 bytes wide rather than 16 bytes wide as in [ 6] 

and [7]. Look-up accesses are given in Table 6 and the layout of one row in Figure 15. 

Table 6. Look-Ups Required for LUT structures in FIR. 
FIR Implementation Usin2 an 8KB Cache Module 

Structure Look-ups Required 
8x8 constant coefficient multipliers 2 
24-bit accumulator 4 

8x8 Const. Mult. 12-bit Adder 24-bit Adder 

Figure 15. Layout of One Row ofLUTs for FIR. 1 Box= 4, 4-LUTs. 12-Bit Adder only 
uses 6 L UTs total. 
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CHAPTER 4. RESULTS AND DISCUSSION 

The TI compiler can compile code with either no optimizations or one of four different levels 

of optimization. Each level of optimization builds on the previous level, so optimizations at 

one level are expanded upon at the next level. For a detailed description of what each 

compiler optimization level does, please see [59]. Briefly, though, level --oO optimizes 

register usage, -ol optimizes the code locally, -o2 optimizes the code globally and --03 

performs file optimizations. The benchmarks and kernels were compiled with the target 

processor being the C64x but with the libraries for the C62x included for all except the FIR 

kernels, which use the C64x libraries. This was done due to compilation difficulties. Often 

the code that was generated when the C64x libraries were included seemed to have infinite 

loops in them and would not process correctly on the c6400 simulator. Again, some 

difficulties were encountered with different optimization levels. Code using the top-most 

optimization would not work for any of the benchmarks or kernels. All benchmarks and 

kernels were implemented with no optimizations as a baseline and then with at least one level 

of optimization. Convolution and FFT used optimizations --oO through --02, DCT only used 

optimization -o 1 and FIR used optimization -o2. Results are given for performance, power 

consumption, energy requirements and L 1 data cache miss rates. Performance is measured 

by cycles required to complete execution rather than execution time as the time will vary 

depending upon the computer the simulator is running on, but the cycles required will not. 
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4.1 OCT 

4.1.1 Performance 

The results of the four different DCT implementations and the two different compiler code 

generations are presented in Figure 16. Results are presented as speedup over the 

corresponding non-reconfigurable simulations (cycles required by Non-RFC divided by 

cycles required for RFC). All of the implementations afforded the DCT kernel quite a bit of 

speedup, with speedups ranging from 128X to 359X (average speedup was 234X). The 

implementations that required fewer reconfigurations performed the best, as was expected. 

With most any implementation there is a tradeoff between performance and area. If the 

minimization of area is more important to the target design environment then the 8KB 

module that implements 16 coefficients with reconfiguration would be the best choice. If 

performance is more important then the implementation that uses distributed arithmetic 

would be the best choice. All of the optimized versions performed better than the 

unoptimized versions. While the portion of RFC code that performs look-ups is unaffected 

by the compiler optimizations, the configuration and data loads are affected by cache misses. 

Therefore, the improved performance for the optimized versions is most likely due to a lower 

L 1 data cache miss rate than the unoptimized RFC versions. It would have been interesting 

to see how the higher optimizations affected the performance of the RFC kernel, but, 

unfortunately, the code generated by the compiler at higher optimizations would not work on 

the simulator. 



www.manaraa.com

59 

DCT Kernel Speedup 
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Figure 16. RFC OCT Kernel Speedups over Non-RFC DCT Kernels. 

While the kernels achieved a lot of speedup, the overall benchmark speedups were not as 

impressive, but are still quite good, as expected by Amdahl's Law. These speedups are listed 

in Table 7 and shown in Figure 17. Due to the fact that the RFC has no control over the 1/0 

functions, which also consume a large fraction of the total cycles, overall the decrease in total 

cycles observed for the benchmark is not as great. 

Table 7. Overall Benchmark Speedups for Compress. 
Overall Compress Benchmark Speedups 

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles) 
Implementation Type Speedup 

16 coefficients, 16KB, no opt. 1.91 
16 coeffici0 nts, 16KB, -o 1 opt. 1.80 
32 coefficients, 16KB, no opt. 1.91 
32 coefficients, 16KB, -o 1 opt. 1.81 
32 coefficients, 32KB, no opt. 1.91 
32 coefficients, 32KB, -ol opt. 1.81 
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Figure 17. Overall Compress Benchmark Speedups 

4.1.2 Power 

60 

The power consumption comparisons are presented in Figure 18. The results are reported as 

the percentage of average total conditional clocking 3 (cc3) power per cycle for Non-RFC 

used by the RFC version (RFC cc3 avg. total power per cycle/Non-RFC cc3 avg. total power 

per cycle* 100). For each implementation the RFC benchmark consumed less power than the 

Non-RFC version with an average power consumption savings of approximately 11 %. This 

is most likely due to the fact that registers and most existing functional units are not accessed 

while the simulator is in RFC mode. Additionally, when the simulator is performing table 

look-ups only the smaller, four-input decoders are used. For all of the implementations the 

compiler-optimized code used less power thd.Il the code with no compiler optimizations. The 

32KB cache version used the least amount of power of the four implementations consuming 

87% of the non-RFC power. 
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Figure 18. Percentage of Non-RFC power consumed by RFC Benchmark. 

4.1.3 Energy Requirements 

The energy requirements for the Compress benchmark are presented in Figure 19. A 

scaled energy value was computed to reflect the additional reduction in energy required due 

to the RFC version running for fewer cycles. The scaled energy value was computed with 

Equation 11. 

61 

E = f X E . X TRFC 
scaled ong. T . (11) 

ong. 

In Equation 11 /is the fraction of non-RFC power consumed by the RFC version, E01d is the 

energy required by the non-RFC version and Tis the number of clock cycles used. All RFC 
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implementations required less energy than their non-RFC counterparts, with RFC energy 

requirements ranging from 45.5 - 49% of non-RFC energy needs. The code that was not 

optimized required less energy to run than the optimized code for all implementations. This 

is often the case, as code that is optimized for speed often uses more instructions to 

implement a given function than code that is not optimized. 

Compress Energy Requirements 
~_;: 

50.0 -------------------, 
g> O 48.0 c 46.0 
a, c: 44.0 
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l z 16 coef. 32 coef. 32 
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32KB 

Implementation Type 

/ II no optimization optimization -o 1 

Figure 19. Percentage of Non-RFC Energy Required by Compress Benchmark. 

The energy requirements are also shown as the percentage of energy saved by the RFC 

implementations. These results are shown in Figure 20. The energy savings were computed 

by subtracting the percentage of non-RFC energy required (shown in Figure 19) from 100. 

Therefore, energy savings were greatest for the code that was not optimized with the 32 

coefficient, 32KB implementation achieving the greatest savings at 54.4%. The savings 

ranged from 50.7-54.4%. 
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Figure 20. Energy Savings for RFC Compress Benchmark. 

4.1.4 Ll Data Cache Miss Rates 
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Since the RFC reduces the amount of L 1 caching area by one-half it is expected that miss 

rates would increase-perhaps even double. In fact, for the unoptimized code the overall L 1 

data cache miss-rate for both RFC versions that used a 16KB cache was double that of the 

non-RFC versions that used a 16KB cache. However, the overall miss rate for these two 

RFC implementations was only 0.02%, therefore this increase in the miss rate did not hinder 

performance too greatly. The optimized code and both the optimized and unoptimized 

versions that used a 32KB cache did not show any increase in miss rates. This lack of 

increase most likely accounts for the performance improvements seen for the optimized 

kernels in section 4.1.1. The lack of increase in miss rate for the optimized code was likely 

due to changes in the way data was loaded and stored locally due to the register and local 

code optimizations. Overall, the low miss rates achieved by the C64 x, even when increased 

due to the RFC, especially when combined with lower power usage and improved 
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performance do not warrant limiting the use of RFC to avoid the increased miss rates. The 

miss rates for the Compress benchmark are shown in Figure 21. They are presented as the 

RFC miss rate increase over Non-RFC (RFC LI data cache miss rate/Non-RFC LI data 

cache miss rate). 
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Figure 21. Increases in Miss Rates for RFC Compress Benchmarks. 

4.2 Convolution 

4.2.1 Performance 

The RFC implementations of convolution for the Edge Detect benchmark were promising. 

While not as high as those for DCT, they were still worthy of implementation, especially if 

code size is of concern. The higher optimizations showed less speedup. This is due to the 

compiler's ability to successfully optimize the code's performance for the current DSP. 

However, even with an optimization of ---02 the RFC showed a speedup of I 2X over the non-
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RFC code. If the -o3 optimized code had run successfully, it probably would have shown 

performance improvements less than 12X for the RFC as the improvements steadily 

decreased from no optimizations to -o2 optimizations. Figure 22 shows the kernel speedups 

for the different optimizations. 

x -c.. 100 
:::::, 
-c 
a, 50 Q) 
c.. u, 

Convolution Kernel Speedup 

no opt opt. -o0 opt. -o 1 opt. -o2 a\g. 

Compiler Optimization Level 

Figure 22. Speedup of the RFC Convolution Kernel for Edge Detect. 

Like the Compress benchmark, there is some overall speedup of the Edge Detect 

benchmark. These values are lower than those seen for Compress due to two facts. One, 

the kernel speedups themselves were not as great as they were for Compress. Two, the 

convolution kernel only accounts for approximately 13% of the cycles required to complete 

benchmark execution whereas DCT accounts for approximately 45% of the cycles required 

to complete benchmark execution. The benchmark speedup values are listed in Table 8 and 

shown in Figure 23. The kernel speedups and the overall benchmark speedups are consistent 

with what was expected due to Amdahl's Law. 
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Table 8. Overall Benchmark Speedups for Edge Detect. 
Overall Edge Detect Benchmark Speedups 

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles) 
Implementation Type Speedup 

No optimization 
-o0 optimization 
-o 1 optimization 
-o2 optimization 

Overall Edge Detect Benchmark 
Speedups 

1.22 
1.18 
1.16 
1.02 

x 1.30 ------------------------, -0. 1.20 
-5 1.10 
I 1.00 
/J; 0.90 

no opt opt. -o0 opt. -o1 opt. -o2 avg. 

Compiler Optimization Level 

Figure 23. Overall Benchmark Speedups for Edge Detect. 

4.2.2 Power 

66 

The total average power consumed per cycle for conditional clocking 3 was lower for all of 

the RFC benchmarks compared to the corresponding non-RFC benchmarks. This was 

expected, for the same reasons as were listed in section 4.1.2. Oddly, the versions that were 

optimized with -o 1 and with -o2 consumed more average power per cycle overall than those 

with no optimizations. The benchmark optimized with -o0 consumed the least amount of 

average power per cycle overall. However, percentage wise, the -o0 and-ol versions 

consumed a higher percentage of their corresponding non-RFC version than did the version 
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with no optimizations and the version with --o2 optimization. The percentage of average 

total power per cycle of the non-RFC version consumed by its corresponding RFC version is 

shown in Figure 24. These values ranged from 85-89% with an average of 87% of the non-

RFC power being consumed by the RFC versions. 
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Figure 24. Percentage of Non-RFC power consumed by RFC Benchmarks. 

4.2.3 Energy Requirements 

The energy requirements are again shown as the percentage of non-RFC energy required by 

the RFC version. These results are displayed in Figure 25. In keeping with Amdahl's Law, 

the percentage of energy required by the RFC versions of the Edge Detect benchmark are 

higher than those seen for the Compress benchmark (and thus energy savings are lower). 

The percentage of non-RFC energy required for the RFC implementations ranged from 71.5-

82.9% with an average of76.6%. As seen with the previous benchmark, the code that was 

not optimized required less energy than the optimized versions, with energy requirements 

increasing as optimization levels increased. The energy savings are shown in Figure 26. The 

savings ranged from 17.1-28.5% with an average of 23.4%. 



www.manaraa.com

68 

Edge Detect Energy Requirements 
I 

C 
85.0 0 z 

't-- 80.0 O';j!. 
G) - 75.0 e>o ca u. ca:= 70.0 G) 
(.) 

65.0 ... 
G) 
a. no opt opt. -o0 opt. -o 1 opt. -o2 a\g. 

Compiler Optimization Level 

Figure 25. Percentage of Non-RFC Energy Required by the Edge Detect Benchmark. 
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Figure 26. Energy Savings for Edge Detect Benchmark. 

4.2.4 Ll Data Cache Miss Rates 

Another interesting phenomenon was observed with the L 1 data cache miss rates for the RFC 

Edge Detect benchmarks-they were actually lower than their non-RFC counterpart for 

all except the unoptimized code. The decrease in miss rates was most likely due to blocking 

effects caused by differences in how the data was retrieved for processing between the RFC 
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and non-RFC versions. This is the only benchmark that this was observed with. The 

increase/decrease in miss rates are displayed in Figure 27. Again, these are presented as the 

result of RFC miss rate divided by non-RFC miss rate. The values that are less than one 

show a decrease in the RFC miss rate. 
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Figure 27. Miss Rate Increase (Decrease) for RFC over Non-RFC. 

4.3 FFT 

4.3.1 Performance 

The speedups achieved by the RFC FFT kernels were not as great as those achieved by DCT 

or convolution. However, they did show the same trend as convolution in terms of speedups 

achieved for different optimization levels. With FFT, like with convolution, the higher the 

optimization, the lower the speedup. Again, the code generated with level -o3 optimizations 

would not execute on thf" simulator, so its results cannot be given. For FFT the speedup 

ranged from 36X for the unoptimized code down to 1 OX for level -o2 optimized code. 

These results are presented in Figure 28. 
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Figure 28. RFC Kernel Speedup over Non-RFC for FFT. 

The overall speedups for the benchmarks are actually slightly better than those seen for 

Edge Detect, despite the fact that the kernel speedups were not as high. This is because 

FFT accounts for about 20% of the total cycles required to complete benchmark execution, 

so any improvements seen in the FFT kernel will have a larger impact on the overall 

performance. These values are listed in Table 9 and shown in Figure 29. 

Table 9. Overall Benchmark Speedups Observed for the Spectral Benchmark. 
Overall Spectral Benchmark Speedups 

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles) 
Implementation Type Speedup 

No optimization 1.44 
-o0 optimization 1.28 
-o 1 optimization 1.17 
-o2 optimization 1.13 

70 
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Figure 29. Overall Benchmark Speedups for the Spectral Benchmark. 

4.3.2 Power 

For the Spectral benchmark the values used to compare power performance were again 

the average total power consumed per cycle for cc3. Overall, the unoptimized RFC version 

used the least amount of power per cycle, with the -o2 RFC version using the second least 

amount overall. However, when looking at the percentage of non-RFC average power per 

cycle consumed by its corresponding RFC version, the percentage of non-RFC power 

consumed steadily decreases from the unoptimized version to the -o2 version. These results 

are displayed in Figure 30. 
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Figure 30. Percentage of Non-RFC Power Consumed by RFC. 

4.3.3 Energy Requirements 

72 

The percentage of non-RFC energy used by the RFC implementations of Spectral are shown 

in Figure 31. These percentages ranged from just over 65% to nearly 78.5% with an average 

of 73 .6%. As seen with the previous two benchmarks, the unoptimized code required the 

least percentage of energy with percentages increases as optimization levels increased. For 

this benchmark optimization level --o 1 used a slightly higher percentage of energy than level 

--02, but the energy requirements between the two levels were not significantly different. 

The energy savings are presented in Figure 32. Again, the savings are greatest for the 

unoptimized code at 34.7%, with an average energy savings of 26.4%. 
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Figure 31. Percentage of non-RFC Energy Required by the Spectral Benchmark. 

Spectral Energy Savings 
I 

C: 
0 z 40.0 
It- - 30.0 0 -;ff!. 
Cl) - 20.0 e>o ns LL en: 10.0 Cl) 
(,) 

0.0 ... 
Cl) 

Q. no opt opt. -o0 opt. -o 1 opt. -o2 a\g. 

Compiler Optimization Level 

Figure 32. Energy Savings for Spectral Benchmark. 

4.3.4 Ll Data Cache Miss Rates 

·i'he miss rates of the level one data cache were all slightly higher for the RFC versions than 

the non-RFC versions, as was expected. However, none of the increases were twice the non-

RFC rate. The largest increase was l .6X for the version with no compiler optimizations. 
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This was a lower increase than was observed for Compress. But an increase in the miss rate 

for the level -o 1 optimization was observed, whereas for Compress, the -o 1 optimization did 

not experience an increase in the miss rate. Again, though, these miss rate increases are not 

so great as to warrant avoiding RFC implementation. The level one data cache miss rate 

increases are shown in Figure 33. 
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Figure 33. Increases in Miss Rates for the RFC Spectral Benchmarks. 

4.4 FIR, 32-Tap and 256-Tap 

4.4.1 Performance 

The TI C6000 compiler does a good job of optimizing FIR kernels. In fact, for the 256-tap 

FIR only RFC runs with inputs of 2048 or higher were able to show any improvement over 

the non-RFC performance. Part of the lack of speedup is definitely due to the high overhead 

of reconfiguration for a ::.56-tap FIR in RFC, but it doesn't help the RFC that the compiler 

alone can improve the performance of the FIR kernel about 10 times over that of code with 

no optimizations. The 32-tap FIR kernel did slightly better than the 256-tap at achieving 
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speedups with fewer inputs. Even so, the best speedup achieved for the RFC 32-tap FIR is 

just over three times faster than the non-RFC version when-o2 compiler optimized code is 

used. Based on these results, if large numbers of inputs (greater than 2048) are going to be 

processed, then the reconfiguration overhead will not diminish the benefits of implementing 

RFC for FIR. If, however, the number of inputs to be processed will be less than 2048, better 

performance will be achieved by simply using the TI compiler to optimize the code. The 

speedups for the RFC 32-tap FIR are given in Figure 34 and those for the RFC 256-tap FIR 

are given in Figure 35. Due to the fact that the FIR code was not an entire benchmark, but 

rather just the FIR kernel plus VO, the overall speedup was negligible (at most 1.0lX for the 

unoptimized 32-tap FIR). There was no overall speedup for the optimized RFC 32-tap FIR 

and, of course, overall performance decreases were seen for the optimized, 256-tap FIR 

RFCs with inputs fewer than 2048. 
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Figure 34. FIR, 32-tap, Kernel Speedup for RFC Implementation. 
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Figure 35. FIR, 256-tap, Kernel Speedup (Decrease) for RFC. 

4.4.2 Power 
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All of the reconfigurable FIR kernels consumed less average power per cycle than the non-

RFC versions. This is expected since fewer of the components that contribute to the total 

power each cycle are used when the kernel is in reconfigurable mode. The average amount 

consumed per cycle did not appear to be dependent upon the number of inputs. This seems 

logical because nothing in terms of hardware would be different per cycle to affect the 

power. The overall total power consumption would be expected to be higher simply due to 

the longer processing time, but when averaged over each cycle, a difference would not be 

expected. The average amount consumed per cycle did not seem to be dependent upon the 

number of taps either, with both the 32-tap and the 256-tap reconfigurable FIRs consuming 

about 85% of their counterpart non-RFC FIRs. Interestingly, the optimi£,ed RFC versions for 

less than 2048 inputs for both the 32-tap and the 256-tap appeared to consume more power 

per cycle than the unoptimized versions. However, considering the unknown amount of error 
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within the power measurements, these differences were not significant enough to 

conclusively state that the optimized versions consumed more power for inputs fewer than 

2048. Due to the lack of variation in the percentage of non-RFC average power per cycle 

consumed by the RFC a graph is not given. 

4.4.3 Energy Requirements 
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Due to the fact that the percentage of non-RFC power consumed by the 32-tap and 256-tap 

FIR filters was fairly consistent for various numbers of data inputs, the percentage of non-

RFC energy required by these filters was fairly consistent as well. The percentage of non-

RFC energy used by the 32-tap RFC filter ranged from 84.4%-84.7% for the code that was 

not optimized and from 85.5-85.7% for the-o2 optimized code. As the number of data 

inputs increased, the percentage of energy required decreased. Likewise, the percent savings 

were fairly consistent as well ranging from 15.3 to 15.6% for the unoptimized code and from 

14.3 to 14.5% for the-o2 optimized code. The energy requirements for the 32-tap FIR filter 

are shown in Figure 36 and the savings are shown in Figure 3 7. 

The range of energy required by the RFC 256-tap FIR was almost identical to the range for 

the 32-tap filter. The percentage of non-RFC energy used for the 256-tap filter (code not 

optimized) with 256 data inputs was 85.4% with the percentage used for numbers of data 

inputs 1024 and greater being 85 .2%. With the level -o2 optimizations the range was 85. 7-

85 .8%. Likewise, the percent savings range was 14.6-14.8% for the code with no compiler 

optimizations and 14.2-14.3% for the code with level -o2 compiler optimizations. Due to the 

similarity of these results to those for the 32-tap filter, graphs are not given. 
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4.4.4 Level One Data Cache Miss Rates 

The Ll data cache miss rate increases for both the 32-tap and the 256-tap reconfigurable 

FIRs are difficult to interpret. For most of the input levels the amount of compiler 
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optimization did not affect the miss rate compared to the miss rate of the unoptimized code. 

Only for the 256-tap FIR with 1024 inputs was a difference observed for the -o2 optimized 

code. That run experienced no increase in the miss rate compared to the non-RFC version, 

whereas the unoptimized RFC version doubled the miss rate compared to its non-RFC 

counterpart. Even more confusing is the miss rate behavior of the reconfigurable 32-tap FIR 

with 1024 inputs. Both the optimized and unoptimized codes for the reconfigurable 32-tap 

FIR had a miss rate twice that of the non-RFC FIRs with 1024 inputs. The only other 32-tap 

input level to experience a miss rate increase was the 256 input and that increase was only 

1.3 times greater than the non-RFC 256 input FIR. Both the 32-tap and 256-tap FIRs did not 

experience any change in the miss rate when 4096 inputs were used. They also had the 

lowest miss rates of the FIR runs with a miss rate of 0.0001 %. Perhaps this is because a 

cache can take advantage of more temporal and spatial locality when the input array is that 

large, thus resulting in fewer misses. The miss rate increases for the 32-tap reconfigurable 

FIR are given in Figure 38 and the increases for the 256-tap reconfigurable FIR are given in 

Figure 39. 
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CHAPTER 5. CONCLUSIONS 

This research has looked at both the power and performance measurements of a 

reconfigurable functional cache within a TMS320C64X digital signal processor. The use of 

a reconfigurable functional cache with a general purpose processor has been shown to be 

beneficial and feasible by other researchers. This work has expanded upon that idea by 

implementing the reconfigurable functional cache in one of the ways of the 2-way set 

associative level one data cache on the C64x. To test the performance and power 

consumption of the RFC on the C64x a simulator, the C6400, was created. The C6400 was 

made by merging together parts from three other simulators and expanding upon them to 

implement the entire C64x ISA within the simulator. Using the simulator with a normal level 

one data cache established a baseline to compare the reconfigurable C6400 to. Three 

benchmarks that contained computationally intensive kernels were used. The benchmarks 

used were Compress, Edge Detect and Spectral from the UTDSP benchmark suite. The 

kernels within these benchmarks were DCT, convolution and FFT. These kernels, along with 

a 32-tap FIR and a 256-tap FIR (also from UTDSP) were implemented in the reconfigurable 

cache. Additionally, since the TI C6000 DSP family has a compiler that is capable of 

advanced optimizations, at least two different levels of optimizations were tested for each 

benchmark/kernel. Results showed that the TI compiler is capable of improving the 

performance of these kernels on its own. However, even with -o2 levels of optimization, the 

results that were obtained were promising. Speedups were most impressive for DCT, which 

normally consumes about 45% of the cycles required to execute the benchmark it is in. The 

DCT speedups ranged from 128X up to over 3 SOX depending upon the RFC implementation 

and the level of optimization. The performance results for convolution and FFT, while not as 



www.manaraa.com

82 

great, were still encouraging. The speedups for convolution ranged from 12X to 95X 

depending upon the optimization level and the speedups for FFT ranged from l0X to 36X. 

The performance results for the 32-tap and 256-tap FIR filters illustrated how configuration 

overhead can diminish the RFC advantage. These results also depicted the compiler's ability 

to optimize MAC operations. Small speedups were shown for reconfigurable FIR filters as 

long as the number of data inputs was greater than 2048. 

The relative power performances for all of the RFC implementations clearly showed that a 

reconfigurable functional cache is viable in an embedded environment. None of the RFC 

implementations consumed more power than the non-reconfigurable implementations. Most 

RFC simulations required about 85-90% of the power required by the standard 

configurations. 

The last statistic that was compared for the reconfigurable and standard simulations was the 

level one data cache miss rate. Since the RFC removes one of the ways from the eligible 

caching area, it effectively reduces the level one data cache size in half when in RFC mode. 

If the RFC were to cause huge increases in miss rates, the increase in cycle latencies 

experienced for accessing main memory would offset any performance gains. The most that 

the RFC increased the miss rates was 2X. But, even in this worst case the miss rate was only 

0.0002% which did not hinder performance greatly. One benchmark, Edge Detect, even 

experienced miss rate decreases for the RFC simulations. 
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In conclusion, these findings support the initial hypothesis that a reconfigurable computing 

cache could enhance the performance of a DSP while maintaining flexibility and still being 

energy-efficient enough to be suitable for an embedded environment. 
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