
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2002

The use of a reconfigurable functional cache in a digital signal The use of a reconfigurable functional cache in a digital signal

processor: power and performance processor: power and performance

Kathryn Fountain Gossett
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation Recommended Citation
Gossett, Kathryn Fountain, "The use of a reconfigurable functional cache in a digital signal processor:
power and performance" (2002). Retrospective Theses and Dissertations. 19860.
https://lib.dr.iastate.edu/rtd/19860

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F19860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/19860?utm_source=lib.dr.iastate.edu%2Frtd%2F19860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

The use of a reconfigurable functional cache in a digital signal
processor: power and performance

by

Kathryn Fountain Gossett

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Akhilesh Tyagi (Major Professor)

Arun Somani
Julie Dickerson

Dan Ashlock

Iowa State University

Ames, Iowa

2002

Copyright© Kathryn Fountain Gossett, 2002. All rights reserved.

www.manaraa.com

Graduate College
Iowa State University

This is to certify that the master's thesis of

Kathryn Fountain Gossett

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

11

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES ...•........•..•.. vii

LIST OF TABLES ... ix

ABSTRACT ... X

CHAPTER 1. INTRODUCTION ... 1

1.1 Performance Improvements in General Purpose Processors and 1
Digital Signal Processors

1.2 Problem Explored .. 3

1.3 Thesis Organization .. 5

CHAPTER 2. LITERATURE REVIEW ... 6

2.1 Architectures that Utilize Existing Cache as a Reconfigurable Component 6

2.1.1 Balanced Architectures .. 6

2.1.1.1 Adaptive Balanced Computing 6

2.1 .1.2 Reconfigurable Modules ... 7

2.1.2 Reconfigurable Cache for Instruction Reuse ... 8

2.2 Reconfigurable Hardware Extensions to Improve Performance and 8
the I/0 Bottleneck

2.2.1 Garp .. 9

2.2.2 OneChip ... 9

2.2.3 Chimaera 1 O

2.2.4 MorphoSys 1 O

2.3 Other Reconfigurable Designs .. 11

2.3.1 The MIT Raw Microprocessor ... 11

2.3 .2 A System on a Chip ... 11

www.manaraa.com

iv

2.3 .3 Another System on a Chip ... 12

2.3.4 CRISP .. 13

2.4 Reconfigurable Digital Signal Processors ... 13

2.4.1 DSP Reconfigurable Logic Hybrid ... 14

2.4.2 Pleiades .. 15

CHAPTER 3. MATERIALS AND METHODS .. 21

3.1 Current C64x Architecture .. 21

3 .1.1 Architecture Overview ... 21

3 .1.2 Instruction Set Architecture ... 23

3 .1.3 Pipeline ... 25

3.1.4 On-Chip Cache ... 27

3.1.4.1 LI Program Cache .. 27

3.1.4.2 Ll Data Cache ... 28

3.1.4.3 L2 Unified Cache .. 29

3.1.5 Power Consumption ... 30

3.2 Reconfigurable Architecture ... 32

3 .2.1 Architecture Overview ... 3 2

3.2.2 Simulator .. 32

3.2.2.1 Cache Simulation .. 34

3.2.2.2 Power Estimation .. 35

3 .2.3 Reconfigurable Functional Cache .. 40

3.2.4 Benchmarks .. 42

3.2.5 Kernel Implementations in RFC .. 43

3.2.5.1 DCT ... 44

www.manaraa.com

V

3.2.5.1.1 1-D DCT with 16 Constant Coefficient Multipliers 47

3.2.5.1.2 1-D DCT with 32 Coefficients and Dedicated 48
Hardware

3.2.5.1.3 1-D DCT with a 16KB Module 49

3.2.5.2 Convolution ... 50

3.2.5.3 FFT .. 52

3.2.5.4 32-Tap and 256-Tap FIR. .. 56

CHAPTER 4. RESULTS AND DISCUSSION .. 57
.

4.1 DCT ... 58

4.1.1 Performance ... 58

4.1.2 Power ... 60

4.1.3 Energy Requirements ... 61

4.1.4 LI Data Cache Miss Rates ... 63

4.2 Convolution ... 64

4.2.1 Performance ... 64

4.2.2 Power ... 66

4.2.3 Energy Requirements ... 67

4.2.4 L 1 Data Cache Miss Rates ... 68

4.3 FFT .. 69

4.3.1 Performance ... 69

4.3.2 Power ... 71

4.3.3 Energy Requirements ... 72

4.3.4 LI Data Cache Miss Rates ... 73

4.4 FIR, 32-Tap and 256-Tap .. 74

www.manaraa.com

vi

4.4.1 Performance ... 74

4.4.2 Power ... 76

4.4.3 Energy Requirements ... 77

4.4.4 Ll Data Cache Miss Rates ... 78

CHAPTER 5. CONCLUSIONS .. 81

REFERENECES ... 84

www.manaraa.com

Vil

LIST OF FIGURES

Figure 1. The SHARC DSP with reconfigurable logic .. 15

Figure 2. Overview of the Design and Software Generation Process 17

Figure 3. Overview of the Pleiades Architecture 18

Figure 4. The Maia Reconfigurable DSP ... 19

Figure 5. Block Diagram ofTMS320C64x .. 23

Figure 6. Example of the ADD(U) instruction layout.. .. 25

Figure 7. Illustration of Fetch Packets Progressing Through the Pipeline 26

Figure 8. Level 2 SRAM/Cache Organizations .. 30

Figure 9. Diagram of a Reconfigurable Cache ... 3 9

Figure 10. 1-D DCT for the rows of an 8x8 Block .. 46

Figure 11. Design of a signed 4x8 Constant Coefficient Multiplier using 4-LUTs 47

Figure 12. Layout of 4-LUTs for Two DCT coefficients ... 48

Figure 13. Layout of LUTs for Convolution .. 52

Figure 14. Layout ofLUTs for FFT 55

Figure 15. Layout ofLUTs for FIR .. 56

Figure 16. RFC DCT Kernel Speedups over Non-RFC DCT Kernels 59

Figure 17. Overall Compress Benchmark Speedups 60

Figure 18. Percentage ofNon-RFC power consumed by RFC Benchmark 61

Figure 19. Percentage ofNon-RFC Energy Required by RFC Benchmark 62

Figure 20. Energy Savings for RFC Compress Benchmark 63

Figure 21. Increases in Miss Rates for RFC Compress Benchmarks 64

Figure 22. Speedup of the RFC Convolution _Kernel for Edge Detect.. 65

www.manaraa.com

Vlll

Figure 23. Overall Benchmark Speedups for Edge Detect ... 66

Figure 24. Percentage of Non-RFC power consumed by RFC Benchmarks 67

Figure 25. Percentage of Non-RFC Energy Required by the Edge Detect Benchmark 68

Figure 26. Energy Savings for Edge Detect Benchmark ... 68

Figure 27. Miss Rate Increase (Decrease) for RFC over Non-RFC 69

Figure 28. RFC Kernel Speedup over Non-RFC for FFT .. 70

Figure 29. Overall Benchmark Speedups for the Spectral Benchmark 71

Figure 30. Percentage of Non-RFC Power Consumed by RFC ... 72

Figure 31. Percentage of Non-RFC Energy Required by the Spectral Benchmark 73

Figure 32. Energy Savings for Spectral Benchmark .. 73

Figure 33. Increases in Miss Rates for the RFC Spectral Benchmarks 74

Figure 34. FIR, 32-tap, Kernel Speedup for RFC Implementation .. 75

Figure 35. FIR, 256-tap, Kernel Speedup (Decrease) for RFC .. 76

Figure 36. Percentage of Non-RFC Energy Required b~ the 32-Tap FIR Kernel.. 78

Figure 3 7. Energy Savings for the 32-Tap FIR Filter Kernel .. 78

Figure 38. Miss Rate Increases for 32-tap Reconfigurable FIR ... 80

Figure 39. Miss Rate Increases for 256-tap Reconfigurable FIR ... 80

www.manaraa.com

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

ix

LIST OF TABLES

Measured Power Consumption Values for the C64x at 600 MHz, 1.4 V 31

Look-Ups Required for LUT structures .. 48

Look-Ups/Cycles Required for LUT and Dedicated Hardware Structures 49

Look-Ups Required for LUT structures in Convolution 51

Look-Ups Required for LUT structures in FFT .. 54

Look-Ups Required for LUT structures in FIR .. 56

Overall Benchmark Speedups for Compress 59

Overall Benchmark Speedups for Edge Detect 66

Overall Benchmark Speedups Observed for the Spectral Benchmark 70

www.manaraa.com

X

ABSTRACT

Due to the computationally intensive nature of the tasks that digital signal processors (DSP)

are required to perform, it is desirable to decrease the time required to execute these tasks.

Minimizing the execution time required for the various algorithms that are commonly and

frequently executed (ex: FIR filters) will improve the overall performance. It is known that

hardware is able to execute algorithms faster than software, however, due to the size

limitations of embedded DSP, not all of the necessary algorithms can be implemented in

hardware. A reconfigurable cache architecture in combination with a DSP is proposed as an

alternative to increase algorithm performance by using reconfigurable hardware rather than

dedicated hardware. Another important issue to consider for embedded processors is the

power consumption of the DSP. Due to the fact that most embedded processors operate by

battery power, energy efficiency is a necessity. This study looks at the power requirements

of a DSP with reconfigurable cache to determine the viability of such an architecture in an

embedded system. Others have shown that reconfigurable cache in conjunction with a

general purpose processor improves performance for some DSP benchmarks. This study

shows that a DSP /reconfigurable cache combination can achieve kernel performance gains

ranging from 10-350 times that of a DSP architecture operating alone and can achieve overall

benchmark speedups ranging from 1.02 to 1.91 times that of the existing DSP architecture.

Further, relative power consumption results show that the power consumption of the

reconfigurable architecture is approximately 85 to 95% of the current architecture (5-15%

power savings) and attains energy savings ranging from approximately 14 to 50%.

www.manaraa.com

CHAPTER 1. INTRODUCTION

Forward Concepts projects that DSP sales will surpass the $12 billion mark by the year 2005

[l]. The projected increase in sales is expected to be due primarily to cellular phone sales but

the increasing popularity of multimedia devices, which use DSPs, like MP3 players and

digital recorders also contribute to the market. As this market continues to grow

manufacturers of DSPs will continue to search for ways to enhance their products. A DSP

that is faster, smaller and more energy efficient than its competitors will enjoy a larger slice

of the market.

1.1 Performance Improvements in General Purpose Processors and Digital Signal
Processors

In today's fast-paced society people do not like to wait, thus technology users expect prompt

and precise computing. If the user is working on a personal computer (PC) it is unlikely that

the PC has a specialized DSP chip, thus it is up to the general purpose processor (GPP) to

meet these expectations. In an effort to increase performance most modem GPPs use multi-

level caches to speed up the retrieval of data from main memory. However, multimedia

processing and other common DSP computations fall into a category of computing referred

to as single instruction, multiple data (SIMD). This refers to the streaming nature of the data

processing where many data elements will be processed in the same manner (thus single

instruction). This type of processing does not take advantage of temporal locality. Computer

designers rely on temporal and spatial locality of data accesses to justify the large fraction of

chip area dedicated to cache. DSP processing under-utilizes large caches [2]. In addition to

multi-level caches, GPPs have increased clock speed, implemented Harvard memory

architectures (separate data and instruction memories for concurrent accesses) and utilized

www.manaraa.com

2

out-of-order processing (which can take advantage of instruction-level parallelism) to further

improve performance. While some DSPs have implemented out-of-order processing and

Harvard memory architectures to increase performance, few have increased clock speeds to

the level of GPPs due to the fact that as clock speed increases, so does the amount of power

consumed. Most DSPs are used in embedded, mobile systems where energy-efficiency is

just as crucial as fast computing. Thus, DSPs have explored other avenues to improve

performance such as implementing very long instruction word (VLIW) architectures. VLIW

architectures are another method of increasing the number of instructions that can be

executed in parallel. In a VLIW architecture several instructions are fetched at once and then

separated into execute packets depending upon which instructions do not have data, name or

control dependencies and thus can be executed in parallel. VLIW architectures rely upon

sophisticated compilers that can statically schedule the code in advance to determine which

instructions can execute in parallel [3]. New methods of analog-to-digital conversion have

also been implemented to increase 1/0. With increased 1/0 speeds and real-time constraints,

the possibility exists to increase computation speed as well. To enhance computing

performance some of the most frequently used algorithms are implemented in hardware.

Unfortunately, space limitations prevent all necessary algorithms from being implemented in

hardware.

Recently, some DSP manufactures such as Texas Instruments (Tl) have started to include on-

chip cache to help increase performance [4]. Since most DSP data computations are of the

streaming nature, these cache sizes are so far relatively small (ex: 16KB). However, [5]

presents an argument that cache size will continue to increase on DSPs, which can be

www.manaraa.com

supported by the fact that TI has increased the cache size in their TMS320C64x line of

processors over what was included on their TMS320C62x line.

In the past few years several types of reconfigurable hardware architectures have been

proposed to help GPPs better utilize the hardware at their disposal and to increase

performance to meet the needs of computationally intensive applications. Another approach

that has been taken in some DSP and GPP systems is to use a field-programmable gate array

(FPGA) to perform some of the highly repetitive computations such as discrete cosine

transform (DCT) or finite impulse response filter (FIR). However, these designs suffer from

an input/output bottleneck due to the fact that all the data necessary for the computations

cannot be stored in the FPGA.

1.2 Problem Explored

3

Most of the reconfigurable GPP designs have not explored the effect of reconfigurability on

power consumption. While it is the author's belief that society as a whole must consider

ways to improve energy efficiency, in DSP applications this is a necessity and thus changes

that affect power consumption must be taken seriously. Therefore, this research will explore

not only the performance improvements that a reconfigurable architecture can lend a DSP,

but also its effects on power consumption. It was shown in [2, 6, 7, 8, 9] that utilizing part of

the level-one cache as a functional unit or other type of reconfigurable hardware can enhance

the performance of a GPP. A fine-grained reconfigurable coprocessor for an Analog

Device's SHARC DSP was proposed in [10] but it did not measure the power consumption

effects of the reconfigurable coprocessor. The research team at the University of California,

Berkley, that is working on the Pleiades project have written a plethora of papers [11, 12, 13,

www.manaraa.com

4

14, 15, 16, 17, 18, 19,20,21] ontheirproposedreconfigurableDSP. ThePleiadesproject

focuses on designing and implementing a low-energy reconfigurable DSP using an ARM

microprocessor and a variety of "satellites" such as a low power field programmable gate

array (FPGA), a multiply and accumulator, memory cells, etc. While they have extensively

studied the energy effects of their reconfigurable architecture, this was the only literature the

author could find on reconfigurable DSPs that also explored power consumption. Both of

these reconfigurable DSP designs require additional hardware to implement. Possibly due to

the fact that cache on a DSP chip is a relatively new occurrence, this author could not find

any literature that explored the use of converting part of the cache to a reconfigurable

functional unit for performance improvements. This study proposes a reconfigurable DSP

that utilizes existing chip structures for implementation of the reconfigurable hardware. The

proposed design uses a reconfigurable cache similar to [6] and [7] to increase performance in

a DSP. The difference between this study and the research done in [6] and [7] is that this

study uses the reconfigurable cache with a VLIW DSP whereas [6] and [7] used the

reconfigurable cache with a superscalar GPP. Further, this research examines power and

energy issues; [6] and [7] did not. The performance, energy and power consumption effects

will be measured using a simulator that was created by this author. The simulator in [22] that

simulates the TI TMS320C62x VLIW processor was modified to simulate the TI

TMS320C64x VLIW processor. The simulator in [22] did not include cache simulation, so

the cache portion of [23] was modified to work with this code and added to the simulator.

The power measurement abilities were achieved by merging the power files from [24] with

the new simulator. Due to the fact that the power files in [24] were created to estimate the

power consumption of an out-of-order processor these files had to be modified to remove the

logic and structure components for out-of-order prediction and miss-prediction correction.

www.manaraa.com

These modifications, along with other minor modifications make the power estimates more

closely reflect the structure of the TMS320C64x VLIW processor.

1.3 Thesis Organization

In order to give the reader a better understanding of what has been researched in the area of

reconfigurable processors, Chapter 2 will focus on an overview of the various proposed

reconfigurable GPP and DSP architectures that attempt to either better utilize cache or

improve upon the VO bottleneck. These architectures can be divided into two broad

categories: architectures that utilize existing resources in new, reconfigurable ways and

architectures that add additional reconfigurable hardware to the chip. A review of previous

research into the energy efficiency of reconfigurable DSPs will also be discussed. Chapter 3

will first present background infonnation on the Texas Instruments TMS320C64x digital

signal processor, which is used as the base processor in this study and then present the

reconfigurable architecture proposed by this author. The experimental setup and multimedia

benchmarks that are used will be described in Chapter 3 as well. Chapter 4 will present the

results of analysis of these benchmarks on the reconfigurable DSP and Chapter 5 will

summarize the conclusions.

5

www.manaraa.com

6

CHAPTER 2. LITERATURE REVIEW

2.1 Architectures that Utilize Existing Cache as a Reconfigurable Component

As stated above, the different reconfigurable architectures can be divided into two categories:

architectures that utilize existing cache as some form of reconfigurable hardware to increase

cache utilization and architectures that add reconfigurable hardware to increase performance

and eliminate the I/O bottleneck. The architectures that utilize cache will be examined first.

2.1.1 Balanced Architectures

2.1.1.1 Adaptive Balanced Computing

A processor chip can be viewed as consisting of components that do one of two basic

functions, memory or computation [6], [7]. As stated in [7], most caches in existence

consume over half of the area of a modern microprocessor chip. However, some processes

cannot efficiently utilize a large cache. Thus, the authors proposed converting part of the

cache (a memory component) into a reconfigurable functional unit (RFU). The goal was to

design an architecture that was more balanced in terms of bandwidth needs, thereby

improving the performance of the architecture. This architecture used an out-of-order issue,

superscalar processor (simulated by SimpleScalar [23]) in conjunction with the

reconfigurable module. Balanced reconfigurable architectures were also studied in [2] and

[8]. A set-associative cache was used with one of the ways (modules) within the cache

converted to a reconfigurable module. The functional modules were given computation

capabilities by making them multi-bit lookup tables. Additional hardware as added to each

reconfigurable module to act as input and output buffers. The purpose of the buffers was to

keep the data flow into and out of the functional modules in order. The out-of-order GPP had

www.manaraa.com

four arithmetic functional units each for integer and floating point as well as one multiplier

each for integer and floating point. The focus of [6] and [7] was to first examine whether or

not this architecture would improve performance. When performance gains were observed,

[6] also focused on fine-tuning the improvements by examining various cache sizes and

configurations. Further, this study takes a conservative approach for the filter kernels by

assuming that an RFU cache access would take three cycles rather than just one. The kernel

functions that were mapped to the reconfigurable cache (RC) were FIR (16 tap and 256 tap)

and DCT/IDCT as well as an infinite impulse response (IIR) filter. Cache sizes and

associations that were compared were 32KB 2-way, 64KB 2-way, 64KB 4-way, 128KB 4-

way. Additionally, direct-mapped, 2-way and 4-way caches were compared for 16KB,

32KB, 64KB and 128KB sizes.

2.1.1.2 Reconfigurable Modules

This design is similar to the architecture used in [6] and [7] that converts part of a traditional

level-one cache into a look-up table with minor implementation differences in terms of the

reconfigurable cache. The primary difference between this design and the previous one is

that existing cache modules are used for input and output space rather than adding hardware

to implement the input and output buffers. Specifics of the processor were not given, but it

was stated that the default simulator values were used. The level one 128KB data cache was

divided into 16 modules. Four of the modules carried out normal cache operations while the

other 12 modules could be used as either a functional unit or a register mapped module. The

kernel functions that were implemented in the reconfigurable modules were a FIR filter and

discrete cosine transform/inverse discrete cosine transform (DCT /IDCT).

7

www.manaraa.com

2.1.2 Reconfigurable Cache for Instruction Reuse

Several different possible uses of RC for multimedia applications were given in [9].

Suggestions included using portions of the cache as lookup tables or buffers for applications

such as value prediction, memoization and instruction reuse. Another suggestion was to use

a portion of the cache as a software or hardware data prefetch area. Due to the streaming

nature of multimedia data, storing data on-chip, in advance, would improve performance.

The third possibility was to use a portion of the cache as memory that was directly under the

control of the compiler or an application. Instruction reuse was the option implemented in

[9]. A 1 GHz, eight-way issue, out-of-order processor was simulated for this study.

However, the RSIM simulator [25], rather than the SimpleScalar simulator, was used. The

level one cache was 128KB 4-way associative. This cache was divided into two 64KB 2-

way associative caches and one way of each division was used as a buffer area to store

instruction reuse entries. Each entry consisted of the instruction's operand values for

arithmetic and logical instructions and addresses for memory instructions. A buffer latency

of 2 cycles was assumed.

2.2 Reconfigurable Hardware Extensions to Improve Performance and the 1/0
Bottleneck

Most of the reconfigurable architectures that have been proposed to date make use of

8

additional hardware component(s) that are similar to, or actually are field-programmable gate

arrays (FPGAs). FPGAs are fine-grained reconfigurable lookup tables that can significantly

improve performance. However, as stated in [26], the drawbacks to systems that utilize only

FPGAs are large reconfiguration overhead times and their inability to hold all the data

necessary to complete most computationally intensive tasks (1/0 bottleneck). The following

architectures examine ways of combining FPGAs or FPGA-like structures with core

www.manaraa.com

9

processors and on-chip memory in an attempt to improve performance while reducing the I/O

bottleneck.

2.2.1 Garp

A type of reconfigurable hardware that attempts to eliminate the I/O bottleneck is Garp [26].

Garp places a FPGA on the processor chip and gives it access to both the data cache and off-

chip memory thereby giving the FPGA access to all the data necessary to perform data-

intensive computations. The FPGA operates in slave mode to the Reduced Instruction Set

Computer (RISC) core processor and is referred to as a reconfigurable array (RA). The RA

is divided into blocks with 24 columns of blocks. The number of rows of blocks can vary

depending on the needs of the application being processed. The granularity of this design is

2 bits, with each block reading as many as four 2-bit pairs and giving up to two 2-bit outputs.

Unlike the architectures reviewed above, the RISC processor used in this design is a single-

issue processor.

2.2.2 OneChip

Another reconfigurable architecture that incorporates FPGA-like extensions onto the

processor chip is OneChip [27]. OneChip uses a 32-bit RISC core processor. The processor

is a single-issue, in-order processor with one existing functional unit (FU). OneChip extends

the functioning capabilities of the processor by placing several programmable functional

units (PFU s) in parallel with the existing FU. The OneChip architecture was improved upon

in [28t which introduced OneChip-98. The key difference in OneChip-98 is placement of

the reconfigurable hardware in the instruction decode stage of the pipeline. Here the FPGAs

function as a flexible interface with memory that has high bandwidth and is capable of

www.manaraa.com

buffering instructions, providing local storage for data and conducting logic computations.

This extension allowed the processor and reconfigurable logic to operate in parallel at a

higher throughput rate. Further, this model upgraded the core processor to an out-of-order

RISC processor.

2.2.3 Chimaera

Chimaera is another reconfigurable design that uses embedded FPGA-like devices on-chip

with the GPP [29]. This system uses the reconfigurable array of FPGA-like devices as a

cache for storing recently used reconfigurable functional unit (RFU) instructions. When a

new RFU instruction is loaded, it replaces the least recently used instruction, thereby

achieving dynamic partial reconfiguration during runtime.

2.2.4 MorphoSys

IO

MorphoSys [30], [31] proposes yet a different reconfigurable architecture for improving

multimedia processing performance. The MorphoSys design consists of a simplified MIPS-

type 100 MHz GPP that was named "Tiny RISC" combined on a chip with an 8 by 8 coarse-

grained reconfigurable cell array. TinyRISC operates on 32-bit words, however, the smallest

data size the reconfigurable cell array can work with is 16 bits (thus, it is coarse-grained).

The reconfigurable cell array, although similar in basic layout to a FPGA is very different at

the cellular level. Each cell is composed of an ALU-multiplier, two multiplexers and a shift

unit. The row/column interconnection of these cells allows MorphoSys to reconfigure the

interconnections and thus change the overall functionality of the array. A simulator,

MorphoSim, has been created to measure MorphoSys performance.

www.manaraa.com

11

2.3 Other GPP Reconfigurable Designs

2.3.1 The MIT Raw Microprocessor

The MIT Raw microprocessor design [32],_ [33] takes a very different approach from the

others in this category in that rather than combining reconfigurable hardware components

with a single processor, the entire chip is composed of numerous reconfigurable tiles each

with its own RISC-like processor. The architecture is called Raw because the compiler is

made aware of (exposed to) the layout of the internal hardware. This awareness enables the

compiler to map functions to hardware more optimally than if the compiler was unaware of

the underlying hardware. The Raw microprocessor combines various tiles structures on an

interconnect fabric to make a structure that is similar in nature to a coarse-grained FPGA. In

addition to each tile having its own RISC-like processor, each tile also has its own SRAM

memory. This distributed memory helps to eliminate the VO bottleneck. The Raw

microprocessor is usually combined with off-chip DRAM for additional storage capacity.

This architecture was analyzed for several different applications to determine the optimal

layout of the tiles and amount of SRAM per tile. The Raw architecture in [32], [33] operates

at 25 MHz and utilizes one billion transistors. Further research into the Raw microprocessor

was reported in [34]. The Raw architecture was implemented at about 225 MHz with 32 tiles

and 0.122 billion transistors in [34].

2.3.2 A System on a Chip

An adaptive system on a chip (aSOC) architecture has been proposed in [35]. Increased

flexibility and performance are achieved by aSOC by connecting different tiles for different

activities. For example, a field-programmable gate array type tile, a GPP RISC type tile, and

a digital signal processor type tile may all be interconnected. Other tiles may be RAM or

www.manaraa.com

12

multiple tiles can even be combined to implement a VLIW processor. The interconnection of

these tiles for various tasks is scheduled statically prior to execution. However, the

implementation of the tiles themselves can be reconfigured dynamically depending on the

needs of the application. Two different configurations of the aSOC were explored in [35].

The first consisted of 2 RISC tiles, 1 FPGA tile and 6 multiplier-accumulators. The second

consisted of 4 RISC tiles, 2 FPGA tiles and 10 multiplier-accumulators. The RISC tiles were

MIPS R4000 processors simulated using SimpleScalar. The FPGA tiles were Altera brand,

simulated using an Altera FPGA simulator. In [36] several algorithms were implemented

with each algorithm mapped to its own tile within the aSOC. Energy efficiency was

considered while mapping these algorithms to the tiles.

2.3.3 Another System on a Chip

The authors of [3 7] propose another system on a chip design for reconfigurable computing.

This design also target multimedia applications in portable devices with a goal of increasing

computing speed. The core reconfigurable component of this design is called a Dnode (Data

node) and is comprised of an ALU and a few storage registers. Thus the Dnode design is

similar to the MorphoSys cell. The Dnodes are arranged around a core controller in a

layered, interconnected ring rather than a square array. The ring structure allows for easier

data feedback according to [3 7]. This design operates at a clock frequency of 200 MHz and

is reported to be capable of 1600 MIPS (millions instructions per second). For details on

other system on a chip designs please see [38] and [39].

www.manaraa.com

13

2.3.4 CRISP

The reconfigurable architecture proposed in [40] is different from all the others discussed

thus far in that it is a VLIW processor with a reconfigurable functional unit added to the chip.

The name, CRISP, is an acronym for Configurable and Reconfigurable Instruction Set

Processor. The CRISP architecture has five integer functional units, 2 load/store units and

one branch unit. The reconfigurable functional unit (RFU) is an array of coarse-grained

processing elements that can be configured to handle 8, 16 or 32-bit data. These data sizes

were chosen because CRISP is specifically targeted at multimedia applications and most

multimedia applications use these data sizes. The CRISP processor has 16KB of level one

instruction cache and 16KB of level one data cache. The level two cache is unified and is

2MB. Additionally, the CRISP processor's reconfigurable functional unit contains 32

processing elements and the CRISP processor has a 4 KB level one configuration cache and a

256KB level two configuration cache. The configuration cache provides nearby storage

space for the configuration data so that the reconfiguration time of the RFU is kept to a

m1rumum.

2.4 Reconfigurable Digital Signal Processors

The literature available on reconfigurable DSPs is much more limited than the literature

available on reconfigurable GPPs. Two different reconfigurable DSP designs were reviewed

and details of them follow. Of these two designs, one designs their reconfigurable DSP to be

energy efficient.

www.manaraa.com

14

2.4.1 DSP Reconfigurable Logic Hybrid

An Analog Devices' SHARC floating point DSP was chosen in [10] as the base DSP. The

SHARC, which is implemented in 0.6 micron technology has 512KB on-chip memory that is

organized as two banks each with an I/0 port so that concurrent memory accesses to each

bank do not conflict. The SHARC also has a multiplier functional unit, an arithmetic logic

unit and a shifter, all of which can operate in parallel. SHARC increases its I/0 speed by

utilizing several on-chip 1/0 peripherals such as a direct memory access (DMA) controller.

The reconfigurable logic is positioned on the chip so that it has access to all of the I/0 ports

and to the register files. This way the reconfigurable logic can act partially as a coprocessor

and partially as a functional unit. In [1 0] the reconfigurable logic itself was described as

resembling the Xilinx 4000 series of FPGAs but the authors stated that a coarse-grained

device similar to the reconfigurable logic used in Garp [26] would probably work better.

Approximately 1000 configurable logic blocks (CLBs) were used in the reconfigurable logic.

The clock speed of SHARC is not given. Nor is the clock speed of the reconfigurable logic

listed. However, [IO] does state that they operate at the same frequency. Figure 1 gives an

overview of their proposed model.

www.manaraa.com

DAG1
Bx4x32

Bus
Connect

{PX)

DAG2
Bx4x24

Data
Register

File

Two lnde~denl o
Dual-Ported Blocks B

Processor Port
Data

.-OPon co "'"'
0

Data Acta co

l ,_, 1~" ~" · 1"-"-'-'"'"H V.d' ~~"' .• ~'<

'(, < mr. 3~y,z,-'i.lir..:!;.

Addr. Bus
Mux

I Multiprocessor
lnterla(e

Data Bus
Mux

Host Port I

Serial Ports
Control
Status, &
Buffers Link Ports

Figure 1. The SHARC DSP with reconfigurable logic [10].

2.4.2 Pleiades

15

The Pleiades research group at the University of California, Berkeley, have invested a lot of

time into the exploration of their reconfigurable DSP architecture. This has allowed them to

explore all aspects of the Pleiades architecture from the method to use to map

computationally intensive algorithms onto their reconfigurable architecture [13], [14] to what

type of reconfigurable interconnect to use [15] to a compiler for generating the code to

execute their design [16]. Figure 2 details the design methodology and the code generation

process.

www.manaraa.com

16

During these investigations three main factors were behind all of their decisions: power,

delay and area. As stated in [13] each of these factors play heavily in determining the

success of a DSP architecture. Unfortunately, optimizations of one of these factors may have

detrimental effects on the other factors. Therefore, it is necessary to consider all three factors

simultaneously when considering design changes. According to [11] the key to designing an

energy-efficient reconfigurable architecture is to closely match the granularity of the

algorithm to the granularity of the unit that processes the architecture. The name Pleiades

refers to a general reconfigurable architecture that can have many different specific

instantiations. The various components that make up the Pleiades architecture area an ARM

microprocessor, a hierarchical generalized mesh reconfigurable interconnect, memory units,

address generators, multiply and accumulators (MACs), arithmetic logic units (ALUs), VO

ports and low power FPGAs that they designed [41]. Each of these units is referred to as a

satellite. Figure 3 shows an overview of the generic Pleiades architecture. The ARM

microprocessor is used primarily for sending configuration data to the various satellites to

ensure a smooth flow of computations at the satellites. Additionally, the microprocessor is

used for simple computations and control flows such as if-then-else statements.

www.manaraa.com

Applications

stage 5.

Partitioning

Compilation/Code Generation

Implementation
Optimization

Satellites

stage 6.

Figure 2. Overview of the Design and Software Generation Process [18].

17

www.manaraa.com

18

Re-configurable ~1mrconnect

R&eonigl.-ation Bus

Figure 3. Overview of the Pleiades Architecture [18].

One specific instantiation of the Pleiades architecture that they discuss is the Maia

architecture. The Maia architecture was designed to perform the different voice processing

algorithms such as VSELP and VCELP [21]. Some of the computationally intensive kernels

of these algorithms are dot product, FIR filter, IIR filter and covariance matrix computation.

A diagram of the Maia architecture can be studied in figure 4.

www.manaraa.com

MemlK

MemlK

Mem

~I Mem512

Interface

0

Universal s,,,itchbax

MemlK

FPGA

MemlK

B
.._ ___ _,. EJ

ARM
I I 2 2

I

2

2 2 1 I

Hierarchical SVfitchlux

2
2

(on 1y cra.s.-mesh connections are sho\\11)

Figure 4. The Maia Reconfigurable DSP [19].

19

www.manaraa.com

20

The Maia architecture is implemented in 0.25 micron technology and has been designed to

operate at an average speed of 40 MHz. The chip is 5.2 mm x 6.7 mm and contains 1.2

million transistors. Maia runs on a main supply voltage of 1 V and consumes an average of

1.5 - 2.0 mW for VCELP processing [21].

www.manaraa.com

21

CHAPTER 3. MATERIALS AND METHODS

As can be seen from the literature reviewed above, most reconfigurable architectures that

have been proposed augment a GPP for performance improvement. Perhaps this is due to the

fact that most DSPs already have many hardware features customized to their common

computationally intensive needs. However, with the ever-increasing computational demands

of multimedia and wireless devices, DSPs can benefit from the incorporation of

reconfigurable hardware to improve performance and to provide more flexibility than

dedicated hardware can provide. The use of cache with DSPs is a relatively new occurrence

[4], however, new DSPs are reducing the 1/0 bottleneck by adding on-chip cache. The Texas

Instruments TMS320C64x (C64x) is one family of DSPs that utilizes on-chip cache for

improved performance. Like in [6], [7], portions of this cache could be used as a

reconfigurable functional unit.

3.1 Current C64x Architecture

3.1.1 Architecture Overview

The current C64x is a fixed-point VLIW architecture that operates at 600 MHz. A VLIW

architecture is designed to execute multiple instructions in parallel. However, unlike a

superscalar processor, instructions are executed in-order and the determination of what

instructions can execute at the same time is determined statically by the compiler prior to

run-time. Branch prediction does not occur in a VLIW architecture either. Therefore, a

VLIW architecture does not need additional complex logic control hardware, such as reorder

buffers and branch prediction tables, that a superscalar processor requires. Rather, a VLIW

architecture relies on a sophisticated compiler to enforce dependencies during compilation.

www.manaraa.com

22

The C64x has two register files (A and B) that each contain 32, 32-bit registers. A modified

Harvard architecture is used for the cache design, thus utilizing two separate level one (L 1)

caches. The Ll program cache is a 16KB direct-mapped cache. The Ll data cache is a

16KB 2-way set associative cache. A unified level two (L2) cache is also included on-chip.

The L2 cache is 1024 KB and can be configured to consist of either all SRAM or partial

SRAM and partial 4-way set associative cache in various combinations. There are four 32-

bit wide data buses connecting the register files to the Ll cache (two per register file). This

enables two 64-bit wide data loads to occur simultaneously. There are some restraints on

which load and store instructions can execute in parallel due to port limitations. For

example, non-aligned loads and stores of words and double words are permitted, but cannot

occur in parallel with any other non-aligned load/store instructions. The bus connecting the

CPU to the instruction cache is 256 bits wide to enable eight 32-bit instructions to be fetched

at once. The C64x has eight different functional units (FUs) that each connect to the register

files. Two of the FUs (. Ll and . L2) handle basic arithmetic operations. The S-units (. S 1

and . S2) handle branches in addition to basic arithmetic operations. The M-units (. Ml and

. M2) are dedicated to multiply and MAC operations. The final two units (. D1 and . D2) are

dedicated to address computations and load/store instructions. A cross-path allows any

functional unit that directly connects to Register file A to receive and store data in Register

file B and vice versa. Only two instructions executing in parallel can access data via the cross

paths (one to A and one to B), but up to two instructions can share the operand received on

the cross path. If the operand being read via the cross path was updated in the previous cycle

a one-cycle delay will occur before the data is available. Figure 5 gives an overview of the

C64x layout [42].

www.manaraa.com

23

EMIFA L1P Cache

EMIFB ' C6000 DSP cx:re

HPIJPCI Instruction Fetch Cootrol

lnstruabn Dispatdi
Registers

Contrd Enhanced
I mln.Jclion Deoode Logic OMA

Other Controller
L2

Te6t
Peripherals Mem:.-y Data PalhA Data Path B

I A Register File l I B Register File I ln-Cirruit
Emulatbn l t t -- % : : Interrupt ... - -...

I L1 I S1 I M1 I D1 I I 02 I M2 I S2 I L2 I lnterrup
Selectcr Contrd dl .

PoNer Do.,·n Logic ,,. ,,

G .. L1OCache
Boot Configuration --. ..

Figure 5. Block Diagram ofTMS320C64x [42].

3.1.2 Instruction Set Architecture

The method by which each instruction moves through the pipeline is dictated by various

fields in its binary instruction. Figure 6 gives an example of a C64x binary instruction (also

referred to as the opcode by TI). All C64x instructions are 32-bits long, but the type and

placement of fields within the instructions varies depending upon the instruction type and

what functional unit it uses. For all instructions, the least significant bit (using Little Endian

notation), denoted by "p", indicates that the instruction executes in parallel with the

instruction preceding it if the bit is set to one. In assembly code the "II" symbol is used to

indicate that the instruction executes in parallel. The next bit, denoted by "s", determines

whether the A register file (s=O) or the B register file (s= 1) is used to send operands to the

functional unit. This bit is always in the same location for all instructions. The next group of

www.manaraa.com

24

bits specifies what functional unit to use for execution. The number of bits used to specify

the functional unit varies, and while generally consistent for each unit type, it does even vary

occasionally for the same unit. In this example, the next three bits are used and are set to 0x6

to denote the . L unit. The group of bits labeled "op", also known as the opfield, specify the

operation performed, which for this example is signed and unsigned addition. The "x" bit

indicates that one of the operands is obtained from the cross path if it is set to one. In

assembly an "X" is listed after the function unit specification (ex: .D2X) to indicate that the

cross path is used. The next five bits in this example, labeled "srcl/cst", indicate the register

number where the first operand is stored or, for some instructions the three bit constant value

to be added to the other operand. Likewise, the next five bits, labeled "src2", indicate the

number of the register that contains the second operand and the five bits labeled "dst"

indicate what register the results will be stored in. Instructions that use a larger constant

displacement use more bits. The remaining four most-significant bits are always used to

indicate whether or not the instruction is conditional, and if so, what register to use to check

the condition. If the "z" bit is set to one the instruction is conditional. Only registers AO -A2

and BO - B2 can be used as conditional registers (in TMS320C62x devices the AO is not a

conditional register). Load and store instructions have slightly different fields. For specifics

on individual instructions, please refer to [43].

The C64x is completely backwards compatible with the TMS320C62x. Thus, all instructions

in the ISA of the C62x are also included in the C64x's ISA. In addition to the ISA of the

C62x the C64x has well over 100 new instructions specific to its architecture. Additionally,

the C64x adds a new control register for specifying some of the parameters necessary for

www.manaraa.com

Galois Field multiplication. One of the new instructions, GMPY 4, implements Galois Field

multiplication, which is a common algorithm in Reed Solomon decoding [44] .

Opcode . L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

I Cf9!) I zl dst I src2 srr:1/cst I XI .. .
op

3 5 5 5 7

Figure 6. Example of the ADD (U) instruction layout [43].

3.1.3 Pipeline

The C64x takes advantage of an 11-stage pipeline in conjunction with the eight FUs to

achieve speeds up to 4800 MIPS [43], [45]. The 11 stages are divided into three groups:

25

Fetch, Decode and Execute. The Fetch group consists of the first four stages: Program

Address Generate (PG), Program Address Send (PS), Program Access Ready Wait (PW) and

Program Fetch Packet Receive (PR). The names of these stages are fairly self-explanatory.

The program counter address is determined by the CPU in the PG stage and then sent to the

instruction cache in the PS stage. The role of the PW stage is not as evident from its name.

In this stage the instruction cache is read. If a miss occurs, then the appropriate block of

instructions is fetched from the unified L2 cache, or from main memory if a miss also occurs

in L2. In the PR stage the fetch packet arrives at the CPU. A total of eight instructions are

fetched at a time in a fetch packet. The Decode group consists of stages Instruction Dispatch

(DP) and Instruction Decode (DC). In the DP stage the fetch packet is broken into one or

more execute packets. Execute packets consist of instructions that can be executed in

parallel. In the C64x architecture an execute packet can be scheduled by the compiler to be

www.manaraa.com

26

loaded in separate fetch packets. However, due to the fact that there are only eight functional

units, an execute packet cannot be larger than eight instructions.

Instruction parallelism is determined statically by the compiler during compilation based on

what instructions do not have data or resource ~onflicts. Due to the limited ability of any

compiler to completely disambiguate memory references further parallelism can often be

obtained by optimizing the code by hand. If the fetch packet contains more than one execute

packet, then further fetches of instructions from the instruction cache are stalled until all of

the execute packets in the DP stage have advanced through the pipeline in order. Figure 7

illustrates how fetch packets containing various numbers of execute packets progress through

the pipeline. The CPU decodes the instructions within the execute packet in stage DC. All

of the stages in the fetch group and the decode group are used by every instruction that

moves through the pipeline. The first stage of the execute group, Execute 1 (EI), is also

utilized by all instructions. The remaining four stages of the execute group, Execute 2 - 5

(E2, E3, E4 and E5), are only used by instructions that cannot complete execution in one

cycle (ex: loads, stores and multiplication).

Clock cycle
Fetch Execute
packet packet

(FP) (EP) 2 3 4 5 6 7 8 9 10 11 12 13
n k
n k+1
n k+2

n+1 k+3
n+2 k+4
n+3 k+5
n+4 k+6
n+S k+7
n+6 k+8

Figure 7. Illustration of Fetch Packets Progressing Through the Pipeline [43].

www.manaraa.com

27

In stage E 1 the instructions in the execute packets begin execution at the functional units

indicated by the unit field in the binary instruction. The functional unit assignment, like the

execute packet assignment, is also done by the compiler statically during compilation. Most

instructions can be assigned to either of the functional units of a particular type. However,

there are a few instructions that are specific to an individual FU and cannot be assigned to the

same FU on the other side (ex: "Branch Using a Register" can only be assigned to .S2).

All branch instructions in the C64x Instruction Set Architecture (ISA) are unconditional,

unless the instruction is predicated. All instructions in the ISA can be predicated for inherent

"if-then-else" instruction handling. Branch instructions, although requiring only one cycle to

determine the branch PC address, have a five-cycle delay slot before the branch is taken.

Load instructions require five cycles to complete, with a four-cycle delay slot (not including

potential cache delays) after the address generation in E 1. Store instructions require three

cycles to complete. A load instruction does not actually access memory until stage E3, thus a

load instruction that follows a store to the same memory location does not have to wait any

cycles for the data to be available. For this reason, TI states that store instructions do not

have any delay slots. However, if a load and a store to the same memory address occur in

parallel, the old data will be loaded and then the new data will be stored [43].

3.1.4 On-Chip Cache

3.1.4.1 Ll Program Cache

As stated above, the C64x has a level-one 16KB program cache that is direct-mapped. This

cache is a read-only cache to prevent corruption of the program that is running. The cache

consists of 32-byte wide blocks. Since a 32-byte block can hold 8 32-bit wide instructions,

www.manaraa.com

28

this block size ensures that each fetch packet can cause at most one cache miss. There are

512 sets in the cache. Only one cycle is required to read a fetch packet from the Ll pro~am

cache if a hit occurs. Due to the fact that misses are pipelined, and that the amount of

parallelism within the fetch packet can affect how soon some instructions in the packet will

be needed, L 1 misses can take anywhere from zero to seven cycles if the data is in the L2

cache. If the data is not in the L2 cache, then the data will have to be fetched from external

memory. The amount of delay incurred due to an external memory access will vary

depending upon what type of external memory the DSP is connected to.

3.1.4.2 Ll Data Cache

The 16KB 2-way set associative data cache is a read-allocate cache. In other words, data

currently in the cache will only be evicted to make room for new data on a read miss. Write

misses do not cause space allocation to occur. Rather, a write miss will store the data in a

write buffer that exists between the L 1 and L2 cache to reduce CPU delays. The L2 cache

will then empty the write buffer as time permits. The write buffer can only hold up to four

double words. If the L2 cache is mapped as SRAM then two single word adjacent stores can

be merged to allow the buffer to not fill up as quickly. The Ll data cache is also a write-

back cache so when a write hit occurs, the data will just be written in L 1. The block that

contains the newly written data will be marked as dirty and it will not be written back to L2

until that block is evicted. The L 1 cache uses a least-recently-used (LRU) policy to

determine what blocks are replaced when space needs to be allocated for read misses.

Memory banks that are 32 bits wide are used to organize the cache in a manner that helps to

ensure that two parallel accesses will not conflict. If, however, the accesses are to the same

www.manaraa.com

memory bank, are not to the same block within that bank and are greater than 16-bit wide

accesses, a stall will occur. Due to miss pipelining in the L 1 cache, a miss in L 1 that hits in

L2 will cause a delay in the range of two to eight cycles. The average delay is five cycles.

As with the Ll program cache, if the Ll data cache request also misses in L2 the delay will

depend upon the type of external memory implemented.

3.1.4.3 L2 Unified Cache

29

In the C64x the L2 unified cache consists of 1024KB, however, not all of that space can act

as cache. The L2 can be configured in a variety of combinations to consist of either 1024KB

of SRAM, or with part of the space acting as a 4-way set associative cache and the remaining

space as SRAM. If part of the space is implemented as cache, its size can range from 32KB

up to 128KB. Figure 8 depicts the different L2 configurations. The memory banks in the

L2 are increased to 64 bits wide rather than the 32-bit wide banks in the L 1. The L2 cache is

a write-allocate cache, rather than read-allocate. This means that a write miss, not a read

miss, will cause space to be allocated in the L2 cache for the new data. Rather, the L2 is a

load-through cache, so read misses in L 1 that also miss in L2 will cause the data to be loaded

directly through the L2 to the L 1 without being written in the L2.

The L2 also uses a LRU scheme for replacing data upon misses. If the level two memory is

configured entirely as SRAM and a read miss occurs, the miss can cause two different

responses. In addition to specifying configuration, the user can also specify whether or not

the SRAM region is cacheable. If it is set up as cacheable, a miss will load an entire block of

data and forward it on the appropriate Ll cache. If it is set up as non-cacheable, then just the

specific piece of data that is needed is retrieved and forwarded to the appropriate LI cache.

www.manaraa.com

Neither way is the data stored in the SRAM space. For more information about the C64x

caches please refer to [42].

L2 Mode L2 r·,.:1emor/ Block Base Address

000 001 010 011 111

OxOOOOOOOO
2

16 Kbytes rJ)
,o:j"

-;(-.
0:::
cl)

Ox00004000 ..-
a>

<(16 Kbytes 0::: <3
-:(if) Cu
0::: ;!" Q) 0
IJ)

M .c. >--
t) Cu
Cu s u J Ox00008000
>--
(v

<D 3F 16 Kbytes .c.
t) (")
(v u
>--
(ij

(],i <"- OxOOOOCOOO ' -r 7j
(j N u 16 Kbytes ;:
[j ~-· _::,.

I

Figure 8. Level 2 SRAM/Cache Organizations [42].

3.1.5 Power Consumption

The power consumption of a processor fluctuates as the bit switching activity fluctuates

during program execution. Due to this data-dependent fluctuation, it is impossible to give

exact power consumption requirements for the C64x or any processor. However, typical

power consumption values based on actual measurements are reported in [46]. The C64x

operates at 600 MHz, is implemented in 0.12µm technology and requires 1.4 V to function

30

www.manaraa.com

31

properly. 1/0 operates at the common external device voltage of 3.3 V. Table 1 lists the

reported power consumption values for C64x. In [46] power is reported "per frequency" and

as high/low activity models, so totals of these values are presented in Table 1. High activity

is classified as eight instructions executing per cycle, with 32 bytes of data being fetched

from L 1 program cache and 16 bytes of data being fetched from L 1 data cache. Additional

specifications are given for the activity of the L2 and other peripherals. Low activity is

classified as only two instructions executing per cycle, with 32 bytes of data being fetched

from L 1 program cache every four cycles and only 2 bytes of data being read from L 1 data

cache. [46] reports that most applications spend about 50-75% of their time in high activity

and the remaining time in low activity. This table includes measured power consumption for

the four different low-power modes that the C64x has: Idle, PDl, PD2, PD3. In the idle

mode NOPs are continuously executed until an interrupt restarts activity. Modes PD1-PD3

shut down various peripherals and clocking of different components to reduce power

consumption. Normal activity can be restored from PDl with an interrupt, but PD2 and PD3

require a reset to restart activity. The power measurements for PD2 and PD3 in [46] disabled

all external memory interface clocking as well to conserve more power. More information

about the low-power modes can be obtained in [42].

Table 1. Measured Power Consumption Values for the C64x at 600 MHz, 1.4 V [46] .
Power Per 50/50 High/Low 75/25 High/Low Low Power Modes (W)
Frequency Activity (W) Activity (W)
(mW/MHz)
CPU with Ll Total Total Idle PDl PD2 PD3

Caches
0.7 1.47 1.61 0.94 0.87 0.35 0.31

www.manaraa.com

32

3.2 Reconfigurable Architecture

3.2.1 Architecture Overview

This research examines the use of a reconfigurable functional cache in the C64x to enhance

performance while maintaining or reducing current design power consumption. In this

research the overall architecture of the C64x is not modified extensively. Existing cache

sizes are used for most simulations with the exception of one that uses a 32KB 2-way set-

associative cache. This was done to see if the existing DSP could be enhanced with the

reconfigurable functional cache (RFC) to improve performance without degrading other

factors that affect performance such as the cache miss rate. If performance and power

consumption measurements are the same or better with a 16KB 2-way set associative cache,

then it is likely that even greater improvements would be seen in the future with larger

caches. It was shown in [6] that cache access time for a reconfigurable cache actually

decreases when compared to a memory cell array cache and increases only 1 % when

compared to a base array cache. Therefore, the reconfigurable cache does not significantly

affect the cycle time and thus the frequency of the DSP is unchanged. Other aspects of the

DSP such as voltage, number and size of registers in the register file, bus widths, etc. are also

unchanged. A couple of reconfigurable implementations do require additional hardware such

as dedicated adders or a divider, as well as input/output buffers. These will be discussed in

more detail in section 3.2.4.

3.2.2 Simulator

The simulator is the embodiment of the instruction set architecture for the C64x in this work.

The only comprehensive, freely available simulator for a TI VLIW processor was the one

implemented by Vinodh Cuppu from the University of Maryland [22]. His simulator was of

www.manaraa.com

33

the TMS320C62x DSP and, because of the file names used, will be referred to as the c6000

simulator in this document. The authors of [47] have written a simulator of the C64x, but

their version is a very stripped-down model with only about 20 instructions implemented.

Further, their version reads in a text version of assembly code to determine what instructions

to simulate, whereas the c6000 loads an actual binary executable generated by the TI

compiler and is thus capable of simulating entire benchmark programs rather than just brief

sections of code.

The c6000 is a functional simulator in that it actually loads data from memory, performs the

operations on the appropriate operands from the appropriate registers and then stores the

result to the appropriate register and on to memory when a store occurs. The c6000 fully

implements the 11-stage pipeline and accurately determines stalls and cycle advancements.

Therefore, the c6000 was chosen as the base simulator that was modified to create a new

simulator, which will be referred to as the c6400 in this document. It should be noted that the

c6000 does not handle interrupts (the actual DSP does), nor does it simulate peripheral

devices, but otherwise is fairly comprehensive. The c6400 does not handle interrupts either.

The only peripheral devices it simulates are the caches.

The c6400 is a mixture of a functional and a timing simulator that simulates the C64x,

including its cache activity, and estimates its power consumption. The c6400 maintains the

functionality of the c6000 simulator but only does timing simulations for the cache accesses.

Primary modifications to the c6000 simulator include increasing the register file size to 32

registers per file, increasing bus widths to accommodate 64-bit wide data, increasing cache

size, and incorporating the instructions into the simulator that the C64x has over and above

www.manaraa.com

34

the C62x. Since this research looks at the performance of reconfigurable cache and its power

consumption, it is necessary for the simulator to simulate and report cache activity as well as

estimates of power consumption of the various components of the DSP. A rudimentary, flat

memory structure existed in the c6000, but there was no cache and no power estimation

capabilities. These capabilities will be discussed next.

3.2.2.1 Cache Simulation

To implement cache in the c6400 the cache files "cache. c" and "cache. h" were

incorporated from the SimpleScalar simulator [23]. In the SimpleScalar simulator the cache

component operates as a timing simulation. In other words, it determines if a cache access

would be a hit or a miss and thus how much latency is incurred by the access, but it does not

actually load data from or store data to the cache. The documentation with the files states

that it has the capability to handle data movement by setting one Boolean variable to true.

However, difficulty was encountered in trying to incorporate the cache as a functional cache.

Therefore, it was decided to continue to use the existing memory simulation for the actual

movement of data during loads and stores and to simply use the cache simulation to

determine if those accesses would be hits or misses. This way the cache simulation can still

track important cache statistics such as miss rate but does not need to be burdened with the

actual data movement. Once it was decided to use the cache simulation as a timing model

only minor modifications such as variable names and declaration types had to be made to

incorporate the cache files into the c6400 simulator.

The cache creation and miss-handling functions were implemented in the main file,

"c6000. c" of the c6400 to maintain consistency with how cache creation and miss-

www.manaraa.com

handling functions are instituted in [23]. Currently, rather than allowing the user to specify

the cache types, sizes and associativity, the values are set within the code to reflect the

current C64x cache sizes and types. In the future, if a user so desired, command-line

specification of these variables could be instituted similar to [23].

3.2.2.2 Power Estimation

35

As mentioned previously, it is difficult to take accurate power measurements of a processor.

It is even more difficult to try to predict the power consumption of a proposed design that has

not been manufactured. Since the design and fabrication of new devices is a costly procedure

many researchers have focused on ways to accurately estimate the power needs of an

architecture that is still in the design stages. The primary means of estimating power

consumption are to estimate power at the architecture-level, the behavior-level, the

instruction-level or the system-level. At the architectural level analytical and empirical

methods have been used. This method attempts to look at the activity switching of various

registers and logic to estimate power. Behavior-level power estimation uses static and

dynamic activity prediction to estimate power. Instruction-level power estimation was

proposed in [48] and its use for embedded systems discussed in [49]. System-Level power

estimation attempts to estimate power consumption for all components of the device to give a

more comprehensive estimate. For an overview of these methods please see [50].

Various researchers have looked specifically at the power requirements of DSPs such as the

Pleiades research referenced earlier. Another power prediction model for a DSP was

proposed in [51]. While similar to the work in [48] and [49], [51] is different in that different

straight line basic blocks are looped through several times to gain power measurements, and

www.manaraa.com

36

then a linear regression model is created to predict future power consumption. Another

research team looked specifically at power estimation for a VLIW DSP [52], but an actual

simulator of these power estimations was not found. Therefore, portions of another

simulator, Sim-Wattch [24] were included in the c6400 simulator to give power estimation

capabilities. Sim-Wattch is built on top of the SimpleScalar simulator, and as such, estimates

the power consumption of an out-of-order processor. An out-of-order processor requires

complex structures such as a reorder buff er and complex controls for speculation and branch

prediction. A VLIW processor does not require any of these complex structures or controls.

In order to more closely reflect a VLIW processor the files "power. c" and "power. h"

that were incorporated from [24] were modified to remove the unnecessary hardware

structures and account for the appropriate size and number of data buses and registers. Sim-

Wattch uses a modified version of the file "time. c" from the CACTI cache simulator [53]

for estimating timing and capacitance measurements of different components of the

simulator. Sim-Wattch can be scaled to better reflect the power needs of different process

technologies. However, 0.12µm technology was not one of the technologies implemented.

The scaling values for 0. 12µm technology were calculated by interpolating between the

values for 0.1 0µm and 0.18µm technology.

Energy consumption is calculated by the equation:

E = P*T = l*Vdd*T (1)

www.manaraa.com

37

Where P stands for power, T represents time, I is the current passing through the device, and

V dd is the voltage required by the device. The derivative of this equation can be taken to

determine the instantaneous power measurement. This is given by Equation 2.

P(t) = V(t) * l(t) (2)

The modified version of Sim-Wattch used in the c6400 initially estimates the power

requirements of the register files, the instruction cache, the data cache, the L2 cache, the

functional units, the buses that connect the functional units to the registers and the clock. It

then scales these values each cycle based on the activity measured in the data that is

transferred between the functional units and the registers and on how many times each

component was accessed during that cycle. Running totals are kept for each component.

The summation of all of these component totals except the clock power represents the energy

consumed during the simulation of the program being executed by the simulator. This is

shown in Equation 3. An average of the overall total is taken to estimate the average power

consumed each cycle and is shown in Equation 4.

Total Energy= Register+ !cache+ Dcache + L2cache +FU_ power+ Resultwires (3)

Average Total Power per cycle = Total Energy-;- total cycles (4)

Sim-Wattch also has three different conditional clocking levels that energy and power are

estimated for. The first, referred to as "eel" in the code is a basic, non-aggressive

conditional clocking. The second (cc2), is an aggressive conditional clocking that assumes

www.manaraa.com

38

zero power is consumed by components that are disabled that cycle. This is an idealistic

clocking model as generally some residual power loss will occur even when a component is

disabled. The third clocking model (cc3) accounts for this residual loss and is perhaps a

more realistic aggressive conditional clocking model.

Power measurements are fundamentally the same for the reconfigurable architecture as for

the base architecture. For both the normal and reconfigurable cache the data caches are

assumed to be segmented, base-array caches. Documentation was not found to support this

assumption of the current implementation of cache in the C64x, but, results can be modified

to reflect a memory-cell only array if desired. There are two major differences for the

reconfigurable DPS. First, cache computing functionality is gained by implementing 4-bit

input look-up tables (4-LUTs) within the data array of an 8KB cache module. Each 4-LUT

requires a four-bit decoder. Please see Figure 9 for a diagram of a reconfigurable cache.

When the reconfigurable cache is in computing mode only the four-bit decoders are accessed,

not the main decoder for the data array. To account for this power the power used by the

data array decoder is scaled to estimate the power for a four-bit decoder. This value is then

scaled by the number of LUTs in the reconfigurable module. Most functional units and main

registers are not accessed while the DSP is in reconfigurable mode, so their totals do not

increase during RFC cycles. The only existing functional units that are routinely accessed

while in reconfigurable mode are the . 01 and . 02 units. These are used during

reconfigurable cache configuration and data input load/stores for address calculations.

Second, when dedicated adders and/or dividers are used by a reconfigurable layout power

estimates for these components are included in the total. The estimates for these components

use the values that are used for the . L units and the . M units respectively and assume a

www.manaraa.com

switching activity of 0.5 for a worst-case estimate. While the addition of these dedicated

devices dictates that bitlines within the cache must be stretched, [6] determined that the

increased capacitance on these stretched bitlines was negligible and thus is ignored here in

power estimates. For a more detailed description of the cache at a transistor level, please

refer to [53] or [6].

n:
(1,

5-.
;i;

LUT
inpll'S"

... --,--
~b ts loc.11 bit line ,,,v

~lobal bit I ine

"'w
•~~----f4!a- ~~ ----~ '- ~ I•~ -- - - ~ !5" H--+---~++4-+--Hi+-+-......... ---f~--+-....+--+-.____....µ.~+-~-+-

/ fn~«
/ i i

/
Enable sicrnal
fcir memory lll)d~

I

lnt~onn~ti :tn

LllT
inpul'S"

ftb ts

lnten7onn~ti l'tn

Figure 9. Diagram of a Reconfigurable Cache [7] .

LUT
inpll'S"

;" i.,.

39

The ml,difications to the Sim-Wattch power simulation have not been verified against actual

measured power consumption of a VLIW processor. As stated in [50], when a designer is

considering optimizations of a potential new architecture, relative power estimations are

www.manaraa.com

40

more important than accurate, actual measurements. The power estimates in the c6400 allow

relative power comparison to see how the reconfigurable modifications affect the power

consumption of the C64x DSP. This is sufficient for this research.

3.2.3 Reconfigurable Functional Cache

To add reconfigurable cache capabilities to the c6400 the cache file "cache. c" was further

modified to handle hit/miss estimations for the RFC. When the simulator is in RFC mode

way O of the 2-way cache is tagged as the reconfigurable module. This means that only way

1 is available for normal cache operations. This effectively reduces the data cache size to

8KB from 16KB. When way O is specified as the RFC module the only allowed accesses to

way O are the loading of configuration data and table look-ups. Input and output buffers are

added to way O to allow for buffering of input data and output data during RFC computing.

The "c 6 0 0 0 . c" file was modified to detect the entry into RFC mode and the exit from RFC

mode. These modifications are based upon the methods used by [6] to implement RFC but

are not identical. For instance, since the binaries that the c6400 uses are generated by a

proprietary compiler, new instructions to handle the configuration of the LUTs in the RFC

could not be added to the ISA. To compensate for this limitation the user must specify the

PC value of the first instruction to the kernel that is implemented in RFC and the PC value of

the exit point from this kernel. These values are easily obtained by viewing the disassembly

code in the TI Code Composer Studio Integrated Development Environment. The simulator

then watches for these values. When the entry PC value is encountered the simulator sets a

global Boolean variable "RFC_ mode" to true.

www.manaraa.com

41

When RFC_ mode is true the simulator will continue to execute the instructions that pass

through the pipeline in order obtain the results of these instructions for later use. However,

cache accesses are not made for these instructions, the cycle counter does not advance and

power updates are not made for these cycles. This is done to limit the impact of these

instructions as much as possible on the device. If the RFC cache were truly implemented in

the device, these instructions would be replaced by RFC instructions, and results of data

calculations would be obtained from the RFC. For simplicity, the RFC simulation handles

only the cycle advancement aspects of the RFC to determine the number of cycles required

for the RFC to configure, load data, compute and store the results back to memory.

Upon initially entering RFC mode the appropriate kernel function in "RFC f uncs. c" is

called. The functions within this file step through the stages needed to use a cache module as

RFC to determine the cycles required as well as incrementing access counters when

appropriate for instruction and data cache and then call the appropriate power function to

calculate power updates each cycle. Each RFC function begins by simulating the loading of

configuration data. To simulate the configuration loads cache accesses are made to both the

instruction cache and data cache to determine cache hit/miss statistics for these loads. Way 0

is not initially flushed, but rather dirty lines that are replaced during configuration loading are

simply handled as they normally would be. If the user wishes to completely flush way 0

before configuration, this can be done without incurring additional CPU stalls due to C64x' s

ability to hide these writebacks within the pipeline [42].

Once the configuration is loaded, then input data is loaded to begin computing. Depending

upon the kernel, this usually involves loading a block of inputs with look-ups not

www.manaraa.com

42

commencing until a complete block of data is present in the input buffer. Output from the

look-ups is stored in the output buffer to await further processing or storage back to memory.

Once all input has been loaded and processed results are stored back to memory. If the

implementation requires reconfiguration of the LUTs before processing can complete, then

computing is delayed until reconfiguring completes. While the current block is processing

the next block of data can be loaded into the input buffer. This allows subsequent data loads

to be hidden so additional delays are not incurred. To ensure timely reconfiguration and data

loading, these values can be locked into a portion of L2 that is acting as SRAM.

3.2.4 Benchmarks

The benchmarks and kernels used to measure the performance of the reconfigurable DSP and

existing C64x DSP were from the University of Toronto's DSP benchmark suite {UTDSP).

However, these benchmarks and kernels originally used floating point variables. With look-

up table computations it is easier to use integer values. Fractional values can be handled if

distributed arithmetic is used [55], but for simplicity these variables and their inputs were

modified to whole number types. The benchmarks chosen for simulation were Compress,

Edge Detect, and Spectral. Compress is an image compression program that uses

DCT. The DCT processing occurs 256 times in Compress and accounts for approximately

45% of the cycles needed to complete the benchmark. Amdahl's Law shows that

optimization efforts should be focused on the portions of an architecture or code that account

for a large fraction of the overall computing time for the effects of these optimizations to be

greatest. Therefore, DCT in Compress is an excellent candidate for RFC. Edge Detect

is an image processing program that uses 2-D convolution as part of the edge detection

process. Convolution is repeated three times in Edge Detect and accounts for

www.manaraa.com

43

approximately 13% of the cycles needed to complete Edge Detect. This percentage does

not make convolution in Edge Detect as good a candidate for RFC as DCT, but it is large

enough that speedups can still be gained with RFC implementation. The third benchmark,

Spectral, does a spectral estimation on an input speech signal using a Fast Fourier

Transform (FFT). FFT is called 16 times during Spectral and consumes about 20% of the

total benchmark cycles, making it another good candidate for RFC.

UTDSP also contains several kernel programs that execute common digital signal processing

filters like FIR, IIR, and normalized lattice filters. The only additional code within these

kernel programs handles I/O of the data. Kernels do not give a true picture of the

performance of an architecture in the real world because seldom will one algorithm run by

itself. However, in digital signal processing these filters are important and thus DSP

architectures are generally tailored to them. Therefore, a 32-tap FIR filter and a 256-tap FIR

filter with inputs ranging from 256 - 4096 were implemented in RFC.

3.2.5 Kernel Implementations in RFC

The 4-LUTs used in these configurations are 16-bits wide in order to better fit within existing

cache designs. In most of the configurations though, not all of these bits are actually

necessary for the computation that is occurring. The different structures implemented with

the 4-LUTs are 8x8 and 8x16 constant coefficient multipliers, various sized adders,

adder/subtracters, accumulators, multiplexers and 16-bit ROM. For each kernel

implementation, a variety of layouts for the LUTs may be possible. With the exception of

DCT, only one layout is presented per benchmark/kernel.

www.manaraa.com

44

3.2.5.1 DCT

An 8x8 2-D DCT with 8-bit inputs and 16-bit coefficients was implemented as 2 1-D DCTs

in RFC. This implementation was based on the DCT design in [56]. The basic equation for

an 8x8 2-D DCT is:

XC = I I XN . _c(_p_)c_(q_) . cos-1r_(2_m_+_l_) P_. cos-:r_(2_n_+_l)_q
pq m=O n=O mn 4 2M 2N

(5)

Where Mis the total number of rows and N is the total number of columns. To break this

into 2 1-D transforms 1-D for the rows is calculated and then 1-D for the columns. The

coefficient equation for 1-D of the rows is:

C K
(2 · column number+ l) • row number• ,r = •cos--------------

2•M
(6)

For Equation 6 K N for row O and / N for all other rows. The coefficient equation

for the 1-D of the columns is:

C t K (2 · row number+ l) • column number• ;r = •cos--------------
2• N

(7)

For the column DCT K M for column O and / M for all other columns. Due to the

symmetry of the coefficients a 1-D transform can be completed with only 32 coefficients

although a total of 64 coefficients are generated. Figure IO shows the basic organization of

www.manaraa.com

the 1-D row transform. In the diagram K ranges from zero to seven. The diagram for the

column transform is similar, so it is not shown.

45

To implement a 1-D transform in 4-LUTs 8-bit adder/subtracters, 8x16 constant coefficient

multipliers, and 24-bit adders are needed. How to create a 4x8 constant coefficient unsigned

and signed multiplier with two 4-LUTs that have 12 bit outputs is explained in [57]. The

signed version is shown in Figure 11. This idea can be expanded to create an 8x 16 constant

coefficient multiplier out of four 4-LUTs that have 16-bit outputs. In this case, the four most

significant bits of each LUT are not used. The primary drawback of this design is that not

all of the 32 constant coefficient multipliers that are needed can be implemented in an 8KB

cache module. Each eight inputs of a row are multiplied with the same eight coefficients and

then the results are added together to generate a total. Since the inputs from two rows are

combined before multiplication this can occur in parallel for all eight rows if there are 32

constant coefficient multipliers. If not, then reconfiguration will need to occur during each

1-D DCT. Four different implementations ofDCT were designed to explore the tradeoff

between using a larger cache module to avoid reconfiguration, using dedicated hardware to

avoid reconfiguration and using a layout that requires implementation. Three of the

implementations are discussed next. The fourth implementation, which uses distributed

arithmetic, is based on the implementation of DCT in [6] and [7]. For details of the fourth

implementation please see [6] or [7].

www.manaraa.com

XKo---11'1

Xj{7---+-.i

Add
Sub

23170 32138 30274 27246 23170 182)5 12540 6393

XK1---+-.-i

Xj{5---+-a.t

Add
Sub

23170 27246 12540 -6393 -23170 --3.2138 --30274 -18205

23170 18205

23170 6~3

Xi<2

Xt(5

-12540 -32138 -231

xt{3

XK4

-30274 -18205 23170

To;igle
Flop

Add
Sub

6393 30274 27246

Add
Sub

27246 -12540 -32138

1 = Add
0 = Sub

Figure 10. 1-D DCT for the rows of an 8x8 Block [56].

A
D
D
E
R

ZK(O to 7)

46

www.manaraa.com

4x8 constant multiplier 4x8 constant muhiplier
12 bits

A6 _.,

AS -----
A4 _....

I 12 bits I

(1 I :OJ

.-\3 ---
A2 __..
.-\1_..
.~\O ---

Sign
extension

,... ..,

[11 :8] [7:0]
12 bit adder

[15:4] (3 :0]

Figure 11. Design of a signed 8x8 Constant Coefficient Multiplier using 4-LUTs [57].

3.2.5.1.1 1-D DCT with 16 Constant Coefficient Multipliers

47

The first implementation of the DCT used an 8KB cache with no dedicated hardware. In an

8KB cache only 16 coefficients can be configured in LUTs at a time. This requires four LUT

rows, leaving four more LUT rows for the adder/subtracters and 24-bit adders. Four 8-bit

adder/subtracters and two 24-bit adders can be implemented in each of the remaining four

rows. This configuration allows four rows to complete 1-D of the DCT before

reconfiguration occurs. After reconfiguration the remaining four rows are able complete.

Each 8x 16 constant coefficient multiplier requires at least one 24-bit adder to sum its partial

products. Due to the constraint on the number of 24-bit adders available, only two

coefficients can complete at a time and three look-ups are needed to complete the summation

www.manaraa.com

48

for each. Table 2 details the number oflook-up requirements for each LUT structure. One

LUT look-up can occur per cycle, so these numbers translate directly to the number of cycles

required for that structure. The total cycles required for the DCT depends on how many of

the look-ups can occur in parallel. This implementation requires a total of 11 cycles to

complete one input each from four rows. Figure 12 gives a layout of2 rows ofLUTs. Three

more replicas of these rows complete the entire 8KB configuration.

Table 2. Look-Ups Required for LUT structures.
1-D DCT Implementation Usin2 an 8KB Cache Module

Structure Look-ups Required
8-bit adder/subtracter 1
8x 16 constant coefficient multiplier 4
24-bit Accumulator 2

24-bit Adder 24-bit Adder

8x16 Constant Multiplier 8xl6 Constant Multiplier 8x16 Constant Multiplier 8xl6 Constant Multiplier

Figure 12. Layout of 4-LUTs for Two DCT coefficients. 1 Box= 4, 4-LUTs.

3.2.5.1.2 1-D DCT with 32 Coefficients and Dedicated Hardware

The second implementation of 1-D DCT in RFC implements the partial product LUTs of all

32 constant coefficient multipliers using 4-LUTs in an 8KB cache module. One dedicated 8-

www.manaraa.com

49

bit adder/subtracter is added for each row to do the initial addition/subtraction of the two

inputs. Additionally, eight dedicated 24-bit adders are placed between each row of LUTs

(one adder for each constant coefficient multiplier). This implementation avoids

reconfiguration costs at the expense of adding dedicated hardware. The look-ups required for

each structure are given in Table 3. The advantages of this implementation are that eight

constant coefficient multiplication and accumulations can occur in parallel rather than just

two as in the previous implementation. A diagram of the LUTs for this layout is not given as

it is basic.

Table 3. Look-Ups/Cycles Required for LUT and Dedicated Hardware Structures.
1-D DCT Implementation Using an 8KB Cache Module,

32 Coefficients, and Dedicated Hardware

3.2.5.1.3 1-D DCT with a 16KB Module

This layout is similar to the first layout, but the total cache size is increased to 32KB to allow

a 16KB reconfigurable module to be used. The doubling in size allows an 8-bit

adder/subtracter and four 24-bit adders to be placed in one row and eight constant coefficient

partial product lookups in the next row. These two rows are repeated three more times to

give the entire configuration of the 16KB module. The advantage of this layout is that an

entire 1-D DCT can be completed without reconfiguration and without the cost of additional

dedicated hardware. The tradeoff is, of course, that more area is required on-chip to

implement a 32KB 2-way cache. The number oflook-ups required for each structure is the

www.manaraa.com

50

--same-as the~first implementation; butcydes are saved because four coefficients per row can

complete their look-ups in parallel and reconfiguration is not required. Again, a diagram is

not shown as the layout is the same as the first, only the number of 24-bit adders and

coefficients are doubled.

3.2.5.2 Convolution

The convolution kernel implemented in Edge Detect multiplies a 128x128 matrix with 16-

bit inputs of an image with a 3x3 filter matrix of 8-bit coefficients. Initially, the absolute

values of the filter matrix are swnmed to determine a normalization value. Then, each value

in the image matrix is multiplied with each value of the filter matrix and the results are

accumulated. The final sum of each of these accumulations is divided by the normalization

value to give the output image value. The equation for the matrix multiplication not

including normalization is:

K=I K-1

sum = LL input_ image[r + i][c + j] * filter[i][j] (8)
J=O J=O

Where rand c range from zero to N-K, N=128 and K=3. This equation can easily be

modified to execute more quickly by simple software loop unrolling to allow nine MACs to

occur in parallel. The reconfigurable version of convolution takes advantage of this fact by

implementing the nine filter coefficients as 16x8 bit constant coefficient multipliers along

with one 24-bit adder for each multiplier. Therefore, an input buffer large enough to hold

nine two-byte inputs is necessary for this RFC implementation. The normalization is done

once at the beginning with a 16-bit adder/subtracter and a multiplexer implemented in a 4-

LUT. The next stage depends upon nine input values being available simultaneously for

www.manaraa.com

51

processing. Once the input buffer is full the MAC stage begins. The nine values obtained

from the multipliers are added pair-wise using five 24-bit adders to reduce the number of

consecutive look-ups required for accumulation. Results are stored in the output buffer until

execution is complete. As with DCT, additional data loads can occur while the LUT look-

ups are occurring, thereby hiding the latency of these loads. When execution has completed

for all inputs the results are stored back to memory. Table 4 lists the number of look-ups

needed for the structures in convolution and Figure 13 shows the layout of the LUTs within

the 8KB cache module.

Table 4. Look-Ups Required for LUT structures in Convolution.
Convolution Implementation Using an 8KB Cache Module

Structure Look-ups Required
16-bit adder/subtracter (sums 9 values) 9
Two input multiplexer 1
16x8 constant coefficient multiplier 4
24-bit Accumulator 4

www.manaraa.com

52

16-bit adder 8x 16 Constant Multiplier 8x 16 Constant Multiplier

E] E] EJ E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]

24-bit Adders 24-bit Adders

Figure 13. Layout of LUTs for Convolution. 1 Box= 4, 4-LUTs. Mux only uses ½ box.

3.2.5.3 FFT

A mathematical understanding of FFT can be gained by looking at Equation 9. This equation

is from [58], which gives a good explanation of FFT. Most software implementations of FFT

www.manaraa.com

53

do not follow this equation closely though, due to the fact that it has a complexity of 0(n 2
) •

Rather, most software implementations strive to achieve a complexity of O(n * log 2 (n)). In

this equation n is the number of inputs and the outputs. A restriction is placed on n that it

must be a power of two. The variables Xk and Yp are the inputs and the outputs. The

subscripts, which can range from zero to n-1, denote which complex-valued input/output is

being used that iteration. The inputs are in the time domain and outputs are transformed to

the frequency domain.

(9)

The Fast Fourier Transform that is used by the Spectral benchmark was implemented in

RFC using 8-bit inputs and 16-bit constant twiddle values. The benchmark code computes

the twiddle factors each time FFT is called, but these values are not dependent on the input

values, so the RFC assumes the twiddle factors have been pre-computed and stored with the

LUT configuration data. Unlike the other implementations, there is no easy division of how

many inputs need to be present before look-ups begin. Therefore, an input buffer large

enough to hold two arrays of 64 one-byte inputs each is used and all data loads must occur

before processing begins. This slows the FFT implementation down due to the fact that some

of the load delays cannot be hidden in the L UT cycles. The FFT code has several statements

that assign the value of one variable to another variable. This is handled in the LUTs by

using an adder with one input fixed to zero and the other input being the variable whose

value is being assigned to the other variable. This could certainly be handled other ways, but

this method was chosen to give a logical flow to the data movement. Another difference

www.manaraa.com

54

between the FFT RFC implementation and the others is the use of four l 6x 16 RO Ms. These

are similar to the 16x16 ROM used in [6] and [7] for the DCT RFC. There are a total of 32

real twiddle factors and 32 imaginary twiddle factors. Sixty-four constant coefficients were

too many to implement in multipliers like the others. Therefore, two 16x 16 RO Ms are used

for real and two for imaginary to store pre-computed partial products. Table 5 lists the cycles

required for the different structures used in the RFC to implement FFT. Figure 14 details the

layout of the LUTs in an 8KB cache. The final stage ofFFT performs a bit-reversal on all of

the real and imaginary inputs. The C64x has an instruction that handles this already-BITR.

The BITR instruction requires two cycles to complete. Therefore, for the last stage the inputs

are moved to registers, the bit reversal is performed on each input and then the results are

stored back to the output buffer.

Table 5. Look-Ups Required for LUT structures in FFT.
FFT Implementation Usin2 an 8KB Cache Module

Structure Look-ups Required
8-bit adders and 8-bit subtracters 1
16x16 ROM 1
24-bit adder for partial products 2

www.manaraa.com

55

Row of 8-bit Adders

E] E] E] E] E] E] E] E]
[::] [::] E] E] E] E] E] E]
E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E] E] E]
E] E] E] E] E] E]
E] E] E] E] E] E]
E] E] E] E] E] E]

24-bit Adders and Subtracters 24-bit Adders

Figure 14. Layout ofLUTs for FFT. 1 Box = 4, 4-LUTs.

www.manaraa.com

56

3.2.5.4 32-Tap and 256-Tap FIR

The implementation of the 32-tap FIR and 256-tap FIR filters differ only in how many times

reconfiguration needs to occur. Therefore, they are both discussed together in this section.

The equation for FIR is shown in Equation 10.

M

y(n)= Lbmx(n-m) (10)
m-0

An FIR filter is simply a convolution (MAC) operation. This implementation uses 8-bit

inputs and 8-bit coefficients. The types of LUT structures used are identical to [6] and [7]

but they are arranged differently within the 8KB cache module. The layout differences are

necessary since the C64 x cache module is 3 2 bytes wide rather than 16 bytes wide as in [6]

and [7]. Look-up accesses are given in Table 6 and the layout of one row in Figure 15.

Table 6. Look-Ups Required for LUT structures in FIR.
FIR Implementation Usin2 an 8KB Cache Module

Structure Look-ups Required
8x8 constant coefficient multipliers 2
24-bit accumulator 4

8x8 Const. Mult. 12-bit Adder 24-bit Adder

Figure 15. Layout of One Row ofLUTs for FIR. 1 Box= 4, 4-LUTs. 12-Bit Adder only
uses 6 L UTs total.

www.manaraa.com

57

CHAPTER 4. RESULTS AND DISCUSSION

The TI compiler can compile code with either no optimizations or one of four different levels

of optimization. Each level of optimization builds on the previous level, so optimizations at

one level are expanded upon at the next level. For a detailed description of what each

compiler optimization level does, please see [59]. Briefly, though, level --oO optimizes

register usage, -ol optimizes the code locally, -o2 optimizes the code globally and --03

performs file optimizations. The benchmarks and kernels were compiled with the target

processor being the C64x but with the libraries for the C62x included for all except the FIR

kernels, which use the C64x libraries. This was done due to compilation difficulties. Often

the code that was generated when the C64x libraries were included seemed to have infinite

loops in them and would not process correctly on the c6400 simulator. Again, some

difficulties were encountered with different optimization levels. Code using the top-most

optimization would not work for any of the benchmarks or kernels. All benchmarks and

kernels were implemented with no optimizations as a baseline and then with at least one level

of optimization. Convolution and FFT used optimizations --oO through --02, DCT only used

optimization -o 1 and FIR used optimization -o2. Results are given for performance, power

consumption, energy requirements and L 1 data cache miss rates. Performance is measured

by cycles required to complete execution rather than execution time as the time will vary

depending upon the computer the simulator is running on, but the cycles required will not.

www.manaraa.com

58

4.1 OCT

4.1.1 Performance

The results of the four different DCT implementations and the two different compiler code

generations are presented in Figure 16. Results are presented as speedup over the

corresponding non-reconfigurable simulations (cycles required by Non-RFC divided by

cycles required for RFC). All of the implementations afforded the DCT kernel quite a bit of

speedup, with speedups ranging from 128X to 359X (average speedup was 234X). The

implementations that required fewer reconfigurations performed the best, as was expected.

With most any implementation there is a tradeoff between performance and area. If the

minimization of area is more important to the target design environment then the 8KB

module that implements 16 coefficients with reconfiguration would be the best choice. If

performance is more important then the implementation that uses distributed arithmetic

would be the best choice. All of the optimized versions performed better than the

unoptimized versions. While the portion of RFC code that performs look-ups is unaffected

by the compiler optimizations, the configuration and data loads are affected by cache misses.

Therefore, the improved performance for the optimized versions is most likely due to a lower

L 1 data cache miss rate than the unoptimized RFC versions. It would have been interesting

to see how the higher optimizations affected the performance of the RFC kernel, but,

unfortunately, the code generated by the compiler at higher optimizations would not work on

the simulator.

www.manaraa.com

59

DCT Kernel Speedup

400 ->< 300 -C. :, 200
G)
G) 100 C. u,

0
16 coef. 32 coef. 32 coef., DA Avg.

32KB

Implementation Type

I II no optimization optimization -o1 I

Figure 16. RFC OCT Kernel Speedups over Non-RFC DCT Kernels.

While the kernels achieved a lot of speedup, the overall benchmark speedups were not as

impressive, but are still quite good, as expected by Amdahl's Law. These speedups are listed

in Table 7 and shown in Figure 17. Due to the fact that the RFC has no control over the 1/0

functions, which also consume a large fraction of the total cycles, overall the decrease in total

cycles observed for the benchmark is not as great.

Table 7. Overall Benchmark Speedups for Compress.
Overall Compress Benchmark Speedups

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles)
Implementation Type Speedup

16 coefficients, 16KB, no opt. 1.91
16 coeffici0 nts, 16KB, -o 1 opt. 1.80
32 coefficients, 16KB, no opt. 1.91
32 coefficients, 16KB, -o 1 opt. 1.81
32 coefficients, 32KB, no opt. 1.91
32 coefficients, 32KB, -ol opt. 1.81

www.manaraa.com

>< 2.00 -§- 1.90
"C I 1.so
C.
u, 1.70

Overall Compress Benchmark
Speedups

16 coef. 32 coef. 32 coef.,
32KB

DA

Implementation Type

Avg.

I II no optimization optimization -o1 i

Figure 17. Overall Compress Benchmark Speedups

4.1.2 Power

60

The power consumption comparisons are presented in Figure 18. The results are reported as

the percentage of average total conditional clocking 3 (cc3) power per cycle for Non-RFC

used by the RFC version (RFC cc3 avg. total power per cycle/Non-RFC cc3 avg. total power

per cycle* 100). For each implementation the RFC benchmark consumed less power than the

Non-RFC version with an average power consumption savings of approximately 11 %. This

is most likely due to the fact that registers and most existing functional units are not accessed

while the simulator is in RFC mode. Additionally, when the simulator is performing table

look-ups only the smaller, four-input decoders are used. For all of the implementations the

compiler-optimized code used less power thd.Il the code with no compiler optimizations. The

32KB cache version used the least amount of power of the four implementations consuming

87% of the non-RFC power.

www.manaraa.com

0

Compress Power Consumption, CC3
Conditional Clocking

90.0
I S 89.0

z
111-_
0
a,~
C)
C'G ..,
C: a,
(.)

a,
0.

88.0

87.0

86.0

85.0 I

16 coef. 32 coef. 32 coef.,
32KB

DA

Implementation Type

Avg.

I f':I No Optimization -o1 i
I I

Figure 18. Percentage of Non-RFC power consumed by RFC Benchmark.

4.1.3 Energy Requirements

The energy requirements for the Compress benchmark are presented in Figure 19. A

scaled energy value was computed to reflect the additional reduction in energy required due

to the RFC version running for fewer cycles. The scaled energy value was computed with

Equation 11.

61

E = f X E . X TRFC
scaled ong. T . (11)

ong.

In Equation 11 /is the fraction of non-RFC power consumed by the RFC version, E01d is the

energy required by the non-RFC version and Tis the number of clock cycles used. All RFC

www.manaraa.com

62

implementations required less energy than their non-RFC counterparts, with RFC energy

requirements ranging from 45.5 - 49% of non-RFC energy needs. The code that was not

optimized required less energy to run than the optimized code for all implementations. This

is often the case, as code that is optimized for speed often uses more instructions to

implement a given function than code that is not optimized.

Compress Energy Requirements
~_;:

50.0 -------------------,
g> O 48.0 c 46.0
a, c: 44.0

0 42.0 r

l z 16 coef. 32 coef. 32
coef.,

DA Avg.

32KB

Implementation Type

/ II no optimization optimization -o 1

Figure 19. Percentage of Non-RFC Energy Required by Compress Benchmark.

The energy requirements are also shown as the percentage of energy saved by the RFC

implementations. These results are shown in Figure 20. The energy savings were computed

by subtracting the percentage of non-RFC energy required (shown in Figure 19) from 100.

Therefore, energy savings were greatest for the code that was not optimized with the 32

coefficient, 32KB implementation achieving the greatest savings at 54.4%. The savings

ranged from 50.7-54.4%.

www.manaraa.com

Compress Energy Savings

32
coef.,
32KB

DA

Implementation Type

Avg.

I II no optimizations optimization -o 1 /

Figure 20. Energy Savings for RFC Compress Benchmark.

4.1.4 Ll Data Cache Miss Rates

63

Since the RFC reduces the amount of L 1 caching area by one-half it is expected that miss

rates would increase-perhaps even double. In fact, for the unoptimized code the overall L 1

data cache miss-rate for both RFC versions that used a 16KB cache was double that of the

non-RFC versions that used a 16KB cache. However, the overall miss rate for these two

RFC implementations was only 0.02%, therefore this increase in the miss rate did not hinder

performance too greatly. The optimized code and both the optimized and unoptimized

versions that used a 32KB cache did not show any increase in miss rates. This lack of

increase most likely accounts for the performance improvements seen for the optimized

kernels in section 4.1.1. The lack of increase in miss rate for the optimized code was likely

due to changes in the way data was loaded and stored locally due to the register and local

code optimizations. Overall, the low miss rates achieved by the C64 x, even when increased

due to the RFC, especially when combined with lower power usage and improved

www.manaraa.com

64

performance do not warrant limiting the use of RFC to avoid the increased miss rates. The

miss rates for the Compress benchmark are shown in Figure 21. They are presented as the

RFC miss rate increase over Non-RFC (RFC LI data cache miss rate/Non-RFC LI data

cache miss rate).

Compress Miss Rate Increases
0
LL
0::: 2.5 -----r-------------------,

I
C:
0 2
z
... - 1.5
G) ><

- 1
G)
,n
ns
(.)
C:

0.5
0

16 coef. 32 coef. 32 coef., DA Avg.
32KB

Implementation Type

I II no optimizations optimization -o1 !

Figure 21. Increases in Miss Rates for RFC Compress Benchmarks.

4.2 Convolution

4.2.1 Performance

The RFC implementations of convolution for the Edge Detect benchmark were promising.

While not as high as those for DCT, they were still worthy of implementation, especially if

code size is of concern. The higher optimizations showed less speedup. This is due to the

compiler's ability to successfully optimize the code's performance for the current DSP.

However, even with an optimization of ---02 the RFC showed a speedup of I 2X over the non-

www.manaraa.com

65

RFC code. If the -o3 optimized code had run successfully, it probably would have shown

performance improvements less than 12X for the RFC as the improvements steadily

decreased from no optimizations to -o2 optimizations. Figure 22 shows the kernel speedups

for the different optimizations.

x -c.. 100
:::::,
-c
a, 50 Q)
c.. u,

Convolution Kernel Speedup

no opt opt. -o0 opt. -o 1 opt. -o2 a\g.

Compiler Optimization Level

Figure 22. Speedup of the RFC Convolution Kernel for Edge Detect.

Like the Compress benchmark, there is some overall speedup of the Edge Detect

benchmark. These values are lower than those seen for Compress due to two facts. One,

the kernel speedups themselves were not as great as they were for Compress. Two, the

convolution kernel only accounts for approximately 13% of the cycles required to complete

benchmark execution whereas DCT accounts for approximately 45% of the cycles required

to complete benchmark execution. The benchmark speedup values are listed in Table 8 and

shown in Figure 23. The kernel speedups and the overall benchmark speedups are consistent

with what was expected due to Amdahl's Law.

www.manaraa.com

Table 8. Overall Benchmark Speedups for Edge Detect.
Overall Edge Detect Benchmark Speedups

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles)
Implementation Type Speedup

No optimization
-o0 optimization
-o 1 optimization
-o2 optimization

Overall Edge Detect Benchmark
Speedups

1.22
1.18
1.16
1.02

x 1.30 ------------------------, -0. 1.20
-5 1.10
I 1.00
/J; 0.90

no opt opt. -o0 opt. -o1 opt. -o2 avg.

Compiler Optimization Level

Figure 23. Overall Benchmark Speedups for Edge Detect.

4.2.2 Power

66

The total average power consumed per cycle for conditional clocking 3 was lower for all of

the RFC benchmarks compared to the corresponding non-RFC benchmarks. This was

expected, for the same reasons as were listed in section 4.1.2. Oddly, the versions that were

optimized with -o 1 and with -o2 consumed more average power per cycle overall than those

with no optimizations. The benchmark optimized with -o0 consumed the least amount of

average power per cycle overall. However, percentage wise, the -o0 and-ol versions

consumed a higher percentage of their corresponding non-RFC version than did the version

www.manaraa.com

67

with no optimizations and the version with --o2 optimization. The percentage of average

total power per cycle of the non-RFC version consumed by its corresponding RFC version is

shown in Figure 24. These values ranged from 85-89% with an average of 87% of the non-

RFC power being consumed by the RFC versions.

Edge Oectect Power Consumption
CC3 Conditional Clocking

Ito- -o '#, 90-------------------, ~o 88 -----
86

B c: 84
i 82 a.

no opt opt. -oO opt. -o1 opt. -o2 a\tg.

Compiler Optimization Level

Figure 24. Percentage of Non-RFC power consumed by RFC Benchmarks.

4.2.3 Energy Requirements

The energy requirements are again shown as the percentage of non-RFC energy required by

the RFC version. These results are displayed in Figure 25. In keeping with Amdahl's Law,

the percentage of energy required by the RFC versions of the Edge Detect benchmark are

higher than those seen for the Compress benchmark (and thus energy savings are lower).

The percentage of non-RFC energy required for the RFC implementations ranged from 71.5-

82.9% with an average of76.6%. As seen with the previous benchmark, the code that was

not optimized required less energy than the optimized versions, with energy requirements

increasing as optimization levels increased. The energy savings are shown in Figure 26. The

savings ranged from 17.1-28.5% with an average of 23.4%.

www.manaraa.com

68

Edge Detect Energy Requirements
I

C
85.0 0 z

't-- 80.0 O';j!.
G) - 75.0 e>o ca u. ca:= 70.0 G)
(.)

65.0 ...
G)
a. no opt opt. -o0 opt. -o 1 opt. -o2 a\g.

Compiler Optimization Level

Figure 25. Percentage of Non-RFC Energy Required by the Edge Detect Benchmark.

Edge Detect Energy Savings
I

C
0 30.0 z

't- -0 ';I!. 20.0
G) -e>o ca u. 10.0 C: a:=
G)
(.)

0.0 ...
G)
a. no opt opt. -o0 opt. -o1 opt. -o2 a\g.

Compiler Optimization Level

Figure 26. Energy Savings for Edge Detect Benchmark.

4.2.4 Ll Data Cache Miss Rates

Another interesting phenomenon was observed with the L 1 data cache miss rates for the RFC

Edge Detect benchmarks-they were actually lower than their non-RFC counterpart for

all except the unoptimized code. The decrease in miss rates was most likely due to blocking

effects caused by differences in how the data was retrieved for processing between the RFC

www.manaraa.com

69

and non-RFC versions. This is the only benchmark that this was observed with. The

increase/decrease in miss rates are displayed in Figure 27. Again, these are presented as the

result of RFC miss rate divided by non-RFC miss rate. The values that are less than one

show a decrease in the RFC miss rate.

Edge Detect Miss Rates
I

C: 1.5 0 z ... -
Cl) >< >- 1.0
Oo
G> LL 0.5 u, a::: as
Cl) ... 0.0 (.)
C:

no opt opt. -o0 opt. -o1 opt. -o2 a\g.

Compiler Optimization Level

Figure 27. Miss Rate Increase (Decrease) for RFC over Non-RFC.

4.3 FFT

4.3.1 Performance

The speedups achieved by the RFC FFT kernels were not as great as those achieved by DCT

or convolution. However, they did show the same trend as convolution in terms of speedups

achieved for different optimization levels. With FFT, like with convolution, the higher the

optimization, the lower the speedup. Again, the code generated with level -o3 optimizations

would not execute on thf" simulator, so its results cannot be given. For FFT the speedup

ranged from 36X for the unoptimized code down to 1 OX for level -o2 optimized code.

These results are presented in Figure 28.

www.manaraa.com

FFT Kernel Speedup

no opt. opt. -oO opt. -o1 opt. -o2 a\g.

Compiler Optimization Level

Figure 28. RFC Kernel Speedup over Non-RFC for FFT.

The overall speedups for the benchmarks are actually slightly better than those seen for

Edge Detect, despite the fact that the kernel speedups were not as high. This is because

FFT accounts for about 20% of the total cycles required to complete benchmark execution,

so any improvements seen in the FFT kernel will have a larger impact on the overall

performance. These values are listed in Table 9 and shown in Figure 29.

Table 9. Overall Benchmark Speedups Observed for the Spectral Benchmark.
Overall Spectral Benchmark Speedups

(Total Non-RFC Benchmark cyclesffotal RFC Benchmark Cycles)
Implementation Type Speedup

No optimization 1.44
-o0 optimization 1.28
-o 1 optimization 1.17
-o2 optimization 1.13

70

www.manaraa.com

71

Overall Spectral Benchmark Speedup

2.00 ->< 1.50 -C.
1.00 "C

Q)
Q) 0.50 C.

"' 0.00
no opt. opt. -o0 opt. -o1 opt. -o2 avg.

Compiler Optimization Level

Figure 29. Overall Benchmark Speedups for the Spectral Benchmark.

4.3.2 Power

For the Spectral benchmark the values used to compare power performance were again

the average total power consumed per cycle for cc3. Overall, the unoptimized RFC version

used the least amount of power per cycle, with the -o2 RFC version using the second least

amount overall. However, when looking at the percentage of non-RFC average power per

cycle consumed by its corresponding RFC version, the percentage of non-RFC power

consumed steadily decreases from the unoptimized version to the -o2 version. These results

are displayed in Figure 30.

www.manaraa.com

.,._ _
O'cfe.
G) -
C>O ca u.

0::
G) I
(.) C: ... 0
G) z a..

Spectral Power Consumption CC3
Conditional Clocking

95
90
85
80

no opt opt. -o0 opt. -o 1 opt. -o2 a\g.

Compiler Optimization Level

Figure 30. Percentage of Non-RFC Power Consumed by RFC.

4.3.3 Energy Requirements

72

The percentage of non-RFC energy used by the RFC implementations of Spectral are shown

in Figure 31. These percentages ranged from just over 65% to nearly 78.5% with an average

of 73 .6%. As seen with the previous two benchmarks, the unoptimized code required the

least percentage of energy with percentages increases as optimization levels increased. For

this benchmark optimization level --o 1 used a slightly higher percentage of energy than level

--02, but the energy requirements between the two levels were not significantly different.

The energy savings are presented in Figure 32. Again, the savings are greatest for the

unoptimized code at 34.7%, with an average energy savings of 26.4%.

www.manaraa.com

73

Spectral Energy Requirements
I

C:
100.0 0 z 80.0 It--

0-;f!!. 60.0 Cl) -e>o 40.0 ns LL c er: 20.0 Cl)
(,)

0.0 ...
Cl)

Q. no opt opt. -o0 opt. -o 1 opt. -o2 a\g.

Compiler Optimization Level

Figure 31. Percentage of non-RFC Energy Required by the Spectral Benchmark.

Spectral Energy Savings
I

C:
0 z 40.0
It- - 30.0 0 -;ff!.
Cl) - 20.0 e>o ns LL en: 10.0 Cl)
(,)

0.0 ...
Cl)

Q. no opt opt. -o0 opt. -o 1 opt. -o2 a\g.

Compiler Optimization Level

Figure 32. Energy Savings for Spectral Benchmark.

4.3.4 Ll Data Cache Miss Rates

·i'he miss rates of the level one data cache were all slightly higher for the RFC versions than

the non-RFC versions, as was expected. However, none of the increases were twice the non-

RFC rate. The largest increase was l .6X for the version with no compiler optimizations.

www.manaraa.com

74

This was a lower increase than was observed for Compress. But an increase in the miss rate

for the level -o 1 optimization was observed, whereas for Compress, the -o 1 optimization did

not experience an increase in the miss rate. Again, though, these miss rate increases are not

so great as to warrant avoiding RFC implementation. The level one data cache miss rate

increases are shown in Figure 33.

Spectral Miss Rates
I

C 2.0 0 z ... - 1.5
Q) >< >- 1.0 Oo
Q) u.
ti) 0:: ca 0.5
(.)
C

no opt opt. -o0 opt. -o1 opt. -o2 a\9.

Compiler Optimization Level

Figure 33. Increases in Miss Rates for the RFC Spectral Benchmarks.

4.4 FIR, 32-Tap and 256-Tap

4.4.1 Performance

The TI C6000 compiler does a good job of optimizing FIR kernels. In fact, for the 256-tap

FIR only RFC runs with inputs of 2048 or higher were able to show any improvement over

the non-RFC performance. Part of the lack of speedup is definitely due to the high overhead

of reconfiguration for a ::.56-tap FIR in RFC, but it doesn't help the RFC that the compiler

alone can improve the performance of the FIR kernel about 10 times over that of code with

no optimizations. The 32-tap FIR kernel did slightly better than the 256-tap at achieving

www.manaraa.com

75

speedups with fewer inputs. Even so, the best speedup achieved for the RFC 32-tap FIR is

just over three times faster than the non-RFC version when-o2 compiler optimized code is

used. Based on these results, if large numbers of inputs (greater than 2048) are going to be

processed, then the reconfiguration overhead will not diminish the benefits of implementing

RFC for FIR. If, however, the number of inputs to be processed will be less than 2048, better

performance will be achieved by simply using the TI compiler to optimize the code. The

speedups for the RFC 32-tap FIR are given in Figure 34 and those for the RFC 256-tap FIR

are given in Figure 35. Due to the fact that the FIR code was not an entire benchmark, but

rather just the FIR kernel plus VO, the overall speedup was negligible (at most 1.0lX for the

unoptimized 32-tap FIR). There was no overall speedup for the optimized RFC 32-tap FIR

and, of course, overall performance decreases were seen for the optimized, 256-tap FIR

RFCs with inputs fewer than 2048.

-X -C.
::::s

"C
G)
G)
C. en

30.00

20.00

10.00

0.00

32 Tap FIR Kernel Speedup

256 1024 2048 4096

Number of Data Inputs

II Kernel Speedup

Kernel Speedup, -
o2 opt.

Figure 34. FIR, 32-tap, Kernel Speedup for RFC Implementation.

www.manaraa.com

256-Tap FIR Kernel Speedup

8-----------------,
g 6-+---------------flt!S---t
C.
4-------

Q)
Q) 2 -1-----------,----c.

o~~--_...i--..._
256 1024 2048 4096

Number of Data Inputs

Iii Kernel Speedup

Kernel Speedup, -
o2 opt.

Figure 35. FIR, 256-tap, Kernel Speedup (Decrease) for RFC.

4.4.2 Power

76

All of the reconfigurable FIR kernels consumed less average power per cycle than the non-

RFC versions. This is expected since fewer of the components that contribute to the total

power each cycle are used when the kernel is in reconfigurable mode. The average amount

consumed per cycle did not appear to be dependent upon the number of inputs. This seems

logical because nothing in terms of hardware would be different per cycle to affect the

power. The overall total power consumption would be expected to be higher simply due to

the longer processing time, but when averaged over each cycle, a difference would not be

expected. The average amount consumed per cycle did not seem to be dependent upon the

number of taps either, with both the 32-tap and the 256-tap reconfigurable FIRs consuming

about 85% of their counterpart non-RFC FIRs. Interestingly, the optimi£,ed RFC versions for

less than 2048 inputs for both the 32-tap and the 256-tap appeared to consume more power

per cycle than the unoptimized versions. However, considering the unknown amount of error

www.manaraa.com

within the power measurements, these differences were not significant enough to

conclusively state that the optimized versions consumed more power for inputs fewer than

2048. Due to the lack of variation in the percentage of non-RFC average power per cycle

consumed by the RFC a graph is not given.

4.4.3 Energy Requirements

77

Due to the fact that the percentage of non-RFC power consumed by the 32-tap and 256-tap

FIR filters was fairly consistent for various numbers of data inputs, the percentage of non-

RFC energy required by these filters was fairly consistent as well. The percentage of non-

RFC energy used by the 32-tap RFC filter ranged from 84.4%-84.7% for the code that was

not optimized and from 85.5-85.7% for the-o2 optimized code. As the number of data

inputs increased, the percentage of energy required decreased. Likewise, the percent savings

were fairly consistent as well ranging from 15.3 to 15.6% for the unoptimized code and from

14.3 to 14.5% for the-o2 optimized code. The energy requirements for the 32-tap FIR filter

are shown in Figure 36 and the savings are shown in Figure 3 7.

The range of energy required by the RFC 256-tap FIR was almost identical to the range for

the 32-tap filter. The percentage of non-RFC energy used for the 256-tap filter (code not

optimized) with 256 data inputs was 85.4% with the percentage used for numbers of data

inputs 1024 and greater being 85 .2%. With the level -o2 optimizations the range was 85. 7-

85 .8%. Likewise, the percent savings range was 14.6-14.8% for the code with no compiler

optimizations and 14.2-14.3% for the code with level -o2 compiler optimizations. Due to the

similarity of these results to those for the 32-tap filter, graphs are not given.

www.manaraa.com

I
C
0 z

FIR 32 Tap Energy Requirements

86.0 -------------,

85. 5 +------------.... -
0 85. 0 ---l------------ II no optimizations

optimization -o2
(1) 0 i LL
1:rx:
Cl)

Cl)
a..

- $
84.5 --

- t.·.=,.. - :~ -
\'i

84.0 -- i :&. "
- .~----;~ -~

8 3. 5L.-li;I;;:._~ ---...-t .. :· ---....a..
256 1024 2048 4096 A VJ.

NumberofD~alnpu~

Figure 36. Percentage of Non-RFC Energy Required by the 32-Tap FIR Kernel.

FIR 32 Tap Energy Savings

256 1024 2048 4096 AVJ.

Number of Data lnpu~

ml no optimizations
optimization -o2

Figure 37. Energy Savings for the 32-Tap FIR Filter Kernel

4.4.4 Level One Data Cache Miss Rates

The Ll data cache miss rate increases for both the 32-tap and the 256-tap reconfigurable

FIRs are difficult to interpret. For most of the input levels the amount of compiler

78

www.manaraa.com

79

optimization did not affect the miss rate compared to the miss rate of the unoptimized code.

Only for the 256-tap FIR with 1024 inputs was a difference observed for the -o2 optimized

code. That run experienced no increase in the miss rate compared to the non-RFC version,

whereas the unoptimized RFC version doubled the miss rate compared to its non-RFC

counterpart. Even more confusing is the miss rate behavior of the reconfigurable 32-tap FIR

with 1024 inputs. Both the optimized and unoptimized codes for the reconfigurable 32-tap

FIR had a miss rate twice that of the non-RFC FIRs with 1024 inputs. The only other 32-tap

input level to experience a miss rate increase was the 256 input and that increase was only

1.3 times greater than the non-RFC 256 input FIR. Both the 32-tap and 256-tap FIRs did not

experience any change in the miss rate when 4096 inputs were used. They also had the

lowest miss rates of the FIR runs with a miss rate of 0.0001 %. Perhaps this is because a

cache can take advantage of more temporal and spatial locality when the input array is that

large, thus resulting in fewer misses. The miss rate increases for the 32-tap reconfigurable

FIR are given in Figure 38 and the increases for the 256-tap reconfigurable FIR are given in

Figure 39.

www.manaraa.com

FIR 32 Tap Miss Rates
I

C
0 2.5 -----------~ z ._ _ 2.0 -4--------

1 .5 -4--------
G) 1.0
m o:: 0.5
t; 0.0 I

C
256 1024 2048 4096

Number of Data Inputs

! no optimizations
i optimization -o2

Figure 38. Miss Rate Increases for 32-tap Reconfigurable FIR.

FIR 256 Tap Miss Rates

256 1024 2048 4096

Number of Data Inputs

I ~----~' i fl no optimizations 1

1 i I ,
optimization -o2 I !

Figure 39. Miss Rate Increases for 256-tap Reconfigurable FIR.

80

www.manaraa.com

81

CHAPTER 5. CONCLUSIONS

This research has looked at both the power and performance measurements of a

reconfigurable functional cache within a TMS320C64X digital signal processor. The use of

a reconfigurable functional cache with a general purpose processor has been shown to be

beneficial and feasible by other researchers. This work has expanded upon that idea by

implementing the reconfigurable functional cache in one of the ways of the 2-way set

associative level one data cache on the C64x. To test the performance and power

consumption of the RFC on the C64x a simulator, the C6400, was created. The C6400 was

made by merging together parts from three other simulators and expanding upon them to

implement the entire C64x ISA within the simulator. Using the simulator with a normal level

one data cache established a baseline to compare the reconfigurable C6400 to. Three

benchmarks that contained computationally intensive kernels were used. The benchmarks

used were Compress, Edge Detect and Spectral from the UTDSP benchmark suite. The

kernels within these benchmarks were DCT, convolution and FFT. These kernels, along with

a 32-tap FIR and a 256-tap FIR (also from UTDSP) were implemented in the reconfigurable

cache. Additionally, since the TI C6000 DSP family has a compiler that is capable of

advanced optimizations, at least two different levels of optimizations were tested for each

benchmark/kernel. Results showed that the TI compiler is capable of improving the

performance of these kernels on its own. However, even with -o2 levels of optimization, the

results that were obtained were promising. Speedups were most impressive for DCT, which

normally consumes about 45% of the cycles required to execute the benchmark it is in. The

DCT speedups ranged from 128X up to over 3 SOX depending upon the RFC implementation

and the level of optimization. The performance results for convolution and FFT, while not as

www.manaraa.com

82

great, were still encouraging. The speedups for convolution ranged from 12X to 95X

depending upon the optimization level and the speedups for FFT ranged from l0X to 36X.

The performance results for the 32-tap and 256-tap FIR filters illustrated how configuration

overhead can diminish the RFC advantage. These results also depicted the compiler's ability

to optimize MAC operations. Small speedups were shown for reconfigurable FIR filters as

long as the number of data inputs was greater than 2048.

The relative power performances for all of the RFC implementations clearly showed that a

reconfigurable functional cache is viable in an embedded environment. None of the RFC

implementations consumed more power than the non-reconfigurable implementations. Most

RFC simulations required about 85-90% of the power required by the standard

configurations.

The last statistic that was compared for the reconfigurable and standard simulations was the

level one data cache miss rate. Since the RFC removes one of the ways from the eligible

caching area, it effectively reduces the level one data cache size in half when in RFC mode.

If the RFC were to cause huge increases in miss rates, the increase in cycle latencies

experienced for accessing main memory would offset any performance gains. The most that

the RFC increased the miss rates was 2X. But, even in this worst case the miss rate was only

0.0002% which did not hinder performance greatly. One benchmark, Edge Detect, even

experienced miss rate decreases for the RFC simulations.

www.manaraa.com

In conclusion, these findings support the initial hypothesis that a reconfigurable computing

cache could enhance the performance of a DSP while maintaining flexibility and still being

energy-efficient enough to be suitable for an embedded environment.

83

www.manaraa.com

REFERENCES

[1] W. Strauss, "DSP Market Alert", Forward Concepts,
www.fwdconcepts.com/press32.htm, Oct. 2001 (Date accessed: 15 June 2002).

[2] A. Singhal. "Reconfigurable Cache Architecture", M.S. Thesis, Dept. of Computer
Science, Iowa State University, Ames, IA, May 2000.

[3] J.L. Hennessy and D.A. Patterson, Computer Architecture A Quantitative Approach,
Morgan Kaufmann Publishers, Inc, San Franciso, CA, Second Edition, 1996.

[4] J. Brenner. "Cache Usage in High-Performance DSP Applications With the
TMS320C64x", Application Report SPRA 756, Available at www.ti.com, Dec. 2001 (Date
accessed: 28 Mar. 2002).

84

[5] Michael J. Lee, "Cache Justification for DSP Processors", EE382C Embedded Software
Systems, www.ece.utexas.edu/~bevans/courses/ee382c/projects/fall99/index.html, Oct. 1999
(Date accessed: 15 June 2002).

[6] Hue-Sung Kim, "Towards Adaptive Balanced Computing (ABC) using Reconfigurable
Functional Caches (RFCs)", Ph.D. Dissertation, Dept. of Computer Engineering, Iowa State
University, Ames, IA, 2001.

[7] H. Kim, A.K. Somani and A. Tyagi. "A Reconfigurable Multi-function Computing Cache
Architecture", IEEE Transactions on VLSI Systems, Vol. 9, No. 4, pp. 509-523, Aug. 2001.

[8] A. Singha!, A. Somani and A. Tyagi, "A Reconfigurable Cache Module Architecture",
The 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
FCCM 'OJ, 2001.

[9] P. Ranganathan, S. Adve and N.P. Jouppi, "Reconfigurable Caches and Their Application
to Media Processing", Proceedings of the 21h International Symposium on Computer
Architecture (ISCA-27), pp. 214-224, June 2000.

[10] P. Graham and B. Nelson, "Reconfigurable Processors for High-Performance,
Embedded Digital Signal Processing", Proceedings of the Ninth International Workshop on
Field Programmable Logic and Applications, Aug. 1999.

[11] J.M. Rabaey, "Reconfigurable Processing: The Solution to Low-Power Programmable
DSP", Proceedings of the 1997 ICASSP Conference, Vol. 1, pp. 275-278, Munich, Apr.
1997.

www.manaraa.com

85

[12] A. Abnous, K. Seno, Y. Ichikaw~ M. Wan and J. Rabaey, "Evaluation of a Low-Power
Reconfigurable DSP Architecture", Proceedings of the Reconfigurable Architecture
Workshop, Orlando, Florid~ Mar. 1998.

[13] M. Wan, Y. Ichikaw~ D. Lidsky, J. Rabaey, "An Energy Conscious Methodology for
Early Design Exploration of Heterogeneous DSPS ", Proceedings of the Custom lntergrated
Circuit Conference, pp.111-117, Santa Cl~ CA, May 1998.

[14] J. Rabaey and M. Wan, "An Energy-Conscious Exploration Methodology for
Reconfigurable DSPs", Proceedings of the 1998 Design Automation and Test in Europe, pp.
341-342, 1998.

[15] H. Zhang, M. Wan, V. George and J. Rabaey. "Interconnect Architecture Exploration
for Low-Energy Reconfigurable Single-Chip DSPs", Proceedings of the Workshop on VLSI,
Orlando, Flori~ pp. 2-8, Apr. 1999.

[16] S. Li, M. Wan and J. Rabaey. "Configuration Code Generation and Optimizations for
Heterogeneous Reconfigurable DSPs", Proceedings of SIPS, pp. 169-180, 1999.

[17] M. Wan, H. Zhang, M. Benes and J. Rabaey, "A Low-Power Reconfigurable Data-Flow
Driven DSP System", Proceedings of SIPS, pp. 191-200, 1999.

[18] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu and J. Rabaey, "Design
Methodology of a Low-Energy Reconfigurable Single-Chip DSP System", Journal of VLSI
Signal Processing, 2000.

[19] "A Low-Energy Heterogeneous Reconfigurable DSP IC", DAC Design Contest,
bwrc.eecs.berkeley.edu/Research/Configurable Architectures/papers.html, 2000 (Date
accessed: 16 May 2001).

[20] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous and J.M. Rabaey, "A
1 V Heterogeneous Reconfigurable Processor IC for Baseband Wireless Applications",
Proceedings of ISSCC, pp. 68 -69, 448, 2000.

[21] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous and J.M. Rabaey, "A
1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal
Processing", IEEE Journal of Solid-State Circuits, Vol. 35, No. 11, pp. 1697-1704, Nov.
2000.

[22] V. Cuppu, "Cycle Accurate Simulator for TM$320C62x, 8 way VLIW DSP Processor",
Graduate Student, Electrical Engineering, University of Maryland,
www.ece.umd.edu/~ramvinod/c6xsim.pdf (Date accessed: 21 June 2001).

[23] D. Burger and T.M. Austin, "The SimpleScalar Tool Set, Version 2.0", Technical
Report #1342, University of Wisconsin, Madison, June 1997.

www.manaraa.com

[24] D. Brooks, V. Tiwari, and M. Martonosi. "Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations", 27th International Symposium on Computer
Architecture (!SCA), pp. 83-94, Vancouver, British Columbia, June 2000.

[25] V.S. Pai, P. Ranganathan and S. Adve, "RSIM: A Simulator for Shared-Memory
Multiprocessor and Uniprocessor Systems that Exploit ILP", Proceedings of the Third
Workshop on Computer Architecture Education, 1997.

[26] J.R. Haueser and J. Wawrzynek, "Garp: A MIPS Processor with a Reconfigurable
Coprocessor", Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM '97), pp. 12-21, Apr. 16-18, 1997.

86

[27] R.D. Wittig and P. Chow, "OneChip: An FPGA Processor with Reconfigurable Logic",
The Fourth Annual IEEE Symposium on FPGAs for Custom Computing Machines (FCCM
'96), pp. 126-135, Mar. 1996.

[28] J .A. Jacob and P. Chow, "Memory Interfacing and Instruction Specification for
Reconfigurable Processors", International Symposium on Field-Programmable Gate Arrays
(FPGA '99), pp. 145-154, ACM/SIGDA, Feb. 1999.

[29] S. Hauck, T.W. Fry, M.M. Hosler and J.P. Kao, "The Chimaera Reconfigurable
Functional Unit", IEEE Symposium on FPGAsfor Custom Computing Machines, pp. 87-96,
1997.

[30] G. Lu, M. Lee, H. Singh, N. Bagherzadeh, F.J. Kurdahi and E.M. Filho, "MorphoSys: a
Reconfigurable Processor Targeted to High Performance Image Application", 6th

Reconfigurable Architectures Workshop, at 13th International Parallel Processing
Symposium. Puerto Rico, Apr. 1999.

[31] H. Singh, M. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh and E.M. Chaves Filho,
"MorphoSys: An Integrated Reconfigurable System for Data-Parallel Computation-Intensive
Applications", IEEE Transactions on Computers, Vol. 49, No. 5, pp. 465-481, May 2000.

[32] C.A. Moritz, D. Yeung and A. Agarwal, "Exploring Optimal Cost-Performance Designs
for Raw Microprocessors", Proceedings of the International IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM 98, pp. 12-27, Apr. 1998.

[33] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, "Baring it all to Software: Raw
Machines", IEEE Computer, Vol. 30, No. 9, pp. 86-93, Sept. 1997.

[34] M.B. Taylor, J. Kim, J. Miller, F. Ghodrat, B. Greenwald, P. Johnson, W. Lee, A. Ma,
N. Shnidman, V. Strumpen, D. Wentzlaff, M. Frank, S. Amarasinghe, and A.Agarwal, ''The
Raw Processor -A Scalable 32-bit Fabric for Embedded and General Purpose Computing",
presented by Michael Bedford Taylor at Hotchips XIII, Palo Alto, California, Aug. 2001.

www.manaraa.com

87

[35] J. Liang, S. Swaminathan, and R. Tessier, "aSOC: A Scalable, Single-Chip
Communications Architecture", Proceedings of the IEEE International Conference on
Parallel Architectures and Compilation Techniques, pp. 37-46, Philadelphia, PA, Oct. 2000.

[36] W. Burleson, R. Tessier, D. Goeckel, S. Swaminathan, P. Jain, J. Euh, S. Venkatraman
and V. Thyagarajan, "Dynamically Parameterized Algorithms and Architectures to Exploit
Signal Variations For Improved Performance and Reduced Power", The Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, 2001 (ICASSP'0l),
Vol. 2, pp. 901-94, Salt Lake City, Utah, May 2001.

[37] G. Sassatelli, G. Cambon, J. Galy and L. Torres, "A Dynamically Reconfigurable
Architecture for Embedded Systems", 12th International Workshop on Rapid System
Protyping,2001, pp. 32-37, 2001.

[38] T. Nishitani, "An Approach to a Multimedia System on a Chip", IEEE Workshop on
Signal Processing Systems, 1999, SIPS 99, pp. 13-22, 1999.

[39] J. Becker, T. Pionteck and M. Glesner, "An Application-tailored Dynamically
Reconfigurable Hardware Architecture for Digital Baseband Processing", Proceedings of the
1 J1h Symposium on Integrated Circuits and Systems Design, 2000, pp. 341-346, 2000.

[40] F. Barat, M. Jayapala, P.O. de Beeck and G. Deconinck, "Reconfigurable Instruction Set
Processors: An Implementation Platform for Interactive Multimedia Applications",
Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and
Computers, 2001, Vol. 1, pp. 481-485, 2001.

[41] V. George, H. Zhang and J. Rabaey, "The Design of a Low Energy FPGA",
Proceedings of ISLPED 1999, pp. 188-193, San Diego, CA, 1999.

[42] "TMS320C6000 Peripherals Reference Guide", Literature No. SPRU190D, available at
www.ti.com, Feb. 2001 (Date accessed: 20 June 2001).

[43] "TMS320C6000 Instruction Set Reference Guide", Liturature No. SPRU189F, available
at www.ti.com, Oct. 2000 (Date accessed: 20 June 2001).

[44] J. Sankaran, "Reed Solomon Decoder: TMS320C64x Implementation", Application
Report SPRA686, available at www.ti.com, Dec. 2000 (Date accessed: 18 Feb. 2002).

[45] C6000 Applications Team, "How to Begin Development Today with the
TMS320C6414, TMS320C6415, and TMS320C6416 DSPs", Application Report SPRA718,
available at www.ti.com, Feb. 2001 (Date accessed: 20 June 2001).

[46] T. Hiers, C6000 Applications Team, "TMS320C6414/15/16 Power Consumption
Summary", Application Report SPRA811A, available at W\VW.ti.com, Mar. 2002 (Date
accessed: 18 May-2002).

www.manaraa.com

88

[47] M. Bhatnagar, L. Kondur, A. Nandi, B. Siravara, "Simulation of the Texas Instruments
TMS320C64x Digital Signal Processor", Final Report for Computer Architecture, University
of Texas, available at www.utdallas.edu/~siravara/finalreport.pdf, Fall 2000 (Date accessed:
15 June 2002).

[48] V. Tiwari, S. Malik, A. Wolfe and M.T.-C. Lee, "Instruction Level Power Analysis and
Optimization of Software", 9th International Conference on VLSI Design, pp. 326-328, Jan.
1996.

[49] M.T-C. Lee, V. Tiwari, S. Malik and M. Fujita, "Power Analysis and Low-Power
Scheduling Techniques for Embedded DSP Software", Proceedings of the Eighth
International Symposium on System Synthesis, pp. 110-115, 1995.

[50] P. Landman, "High-Level Power Estimation", International Symposium on Low Power
Electronics and Design, pp. 29-35, Monterey, CA, 1996.

[51] C.H. Gebotys and R.J. Gebotys, "Designing for Low Power in Complex Embedded DSP
Systems", Proceedings of the 3?'1 Hawaii International Conference on System Sciences, pp.
1-8, 1999.

[52] R. Muresan and C.H. Gebotys, "Current Consumption Dynamics at Instruction and
Program Level for a VLIW DSP Processor", ISSS'OJ, Vol. 14, pp. 130-135, Montreal,
Quebec, Canada, Oct. 2001.

[53] S.J.E. Wilton and N.P. Jouppi, "An Enhanced Access and Cycle Time Model for On-
Chip Caches", WRL Research Report 93/5, Western Research Laboratory, Palo A Ito, CA,
July, 1994.

[54] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, "MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communication Systems", 3dh Internal Symposium on
Microarchitecture, pp. 330-335, 1997.

[55] "The Role of Distributed Arithmetic in FPGA-based Signal Processing", Xilinx
Application Notes, available from http://www.xilinx.com/appnotes/theoryl .pdf, Oct. 2000
(Date accessed: 30 July 2001).

[56] "Video Compression Using DCT", Xilinx Application Note: Virtex-II Series, XAPP610,
Ver. 1.2, available from http://www.xilinx.com/xapp/xapp610.pdf, Apr. 2002 (Date accessed:
17 June 2002).

[57] A.K. Somani and A. Tyagi, Instructors, H. Kim, Scribe, "Implementation of Functional
Units using LUTs", Lecture 4&5, CprE/ComS 583x Adaptive Computing Systems, Iowa
State University, available from http://class.ee.iastate.edu/somani/cpre583/lecturenotes.html,
Fall 1998 (Date accessed: 17 July 2002).

www.manaraa.com

[58] D. Cross, "FFT Fast Fourier Transforms",
http://www.intersrv.com/~dcross/fft.html#section3, Feb. 2000 (Date accessed: 17 June
2002).

[59] "TMS320C6000 Optimizing Compiler User's Guide", Literature Number SPRU187,
available at www.ti.com, Apr. 2001 (Date accessed: 14 May 2002).

89

	The use of a reconfigurable functional cache in a digital signal processor: power and performance
	Recommended Citation

	The use of a reconfigurable functional cache in a digital signal processor: power and performance

